
POLYUFC: Polyhedral Compilation Meets Roofline
Analysis for Uncore Frequency Capping

Nilesh Rajendra Shah
Department of CSE

IIT Hyderabad, India
cs22resch12001@iith.ac.in

M V V S Manoj Kumar
Department of CSE

IIT Hyderabad, India
mvvsmanojkumar.official@gmail.com

Dhairya Baxi
Department of CSE

IIT Hyderabad, India
baxidhairya2312@gmail.com

Ramakrishna Upadrasta
Department of CSE

IIT Hyderabad, India
ramakrishna@cse.iith.ac.in

Abstract—We present POLYUFC, an MLIR based compilation
flow for uncore frequency capping that combines (performance
and power) roofline analyses and polyhedral compilation-based
static analysis for characterization of affine programs. We
introduce a parametric mathematical model that links operational
intensity and uncore frequency to derive frequency caps, validated
through empirical evaluation on real hardware. By embedding
these caps into Pluto optimized code generated by Polygeist, we
achieve improvements in Energy Delay Product (EDP) up to
42% on compute-bound, and up to 54% on bandwidth-bound
programs—carefully selected from ML-models from vision/NLP
domains and POLYBENCH—over Intel UFS driver. Our framework
is retargetable across multiple micro-architectures; and can handle
multiple optimization goals like performance, energy and EDP,
and is applicable across inter/intra dialects.

Index Terms—static analysis, cache model, performance analy-
sis, power analysis, capping, roofline model, mlir

I. INTRODUCTION AND MOTIVATION

Motivation A sudden power crunch has recently been
observed for data centre operators [33, 106, 75, 100] having
fixed power budget due to increased demand for running ML
models for inference and scientific codes on the existing
infrastructure, which primarily contains CPUs. Managing
power consumption in these platforms, where maximizing
performance and energy efficiency is paramount, remains a
complex and persistent challenge [62, 84]. Accurate prediction
and control of peak power usage are essential not only for
preventing hardware damage but also for enabling compilers
and system software to optimize energy profiles for domain-
specific applications and hardware.

(Uncore) Frequency Capping: Frequency capping is a
practical and widely applicable “knob” for power manage-
ment that imposes explicit limits on frequency of a com-
ponent to enforce energy budgets to eliminate frequency
over-provisioning. Modern processors provide mechanisms for
frequency capping [54, 40, 4] in two primary components:
the computational cores (core), and the non-core1 components
(uncore). Although both frequency managements are important,
the uncore subsystem has emerged as a significant contributor to
overall processor power [45, 37, 88, 36, 4, 107]- it can account
for average 30% of total package power [37, 18, 34, 4]. For
uncore power management, frequency capping emerges as an

1Includes last-level cache (LLC), memory controllers, and interconnects.

effective technique to satisfy memory bandwidth requirements
of programs.

Compiler-Driven Uncore Frequency Capping Polyhedral
compilers like Pluto [13, 14] are well established to optimize
affine programs for performance. However, the analytical
modeling based cost functions in these compilers do not
consider alternate energy-efficiency based cost models that
are retargetable to different platforms. This motivates our first
challenge about necessity of an [C1] automatic (compiler-
driven) selection of frequency capping for (performance+)
energy efficiency adapted to the target hardware platform. Such
a frequency capping based technique is naturally implemented
in versatile modern compiler infrastructures like MLIR [53, 64],
that allow analyses at multiple dialect representations, and
application of frequency caps at multiple program-points and
dialect-levels.

Characterization Necessity For any (static-analysis) com-
piler driven performance optimization, the key is an accurate
characterization of programs into the so-called compute-bound
or memory (bandwidth)-bound (CB/BB) categories [26, 27,
69, 70, 2]. For CB programs, the performance remains stable
across different uncore frequencies. But energy consumption
increases at higher frequencies due to unnecessary power
allocated to uncore. In contrast, BB programs require more
uncore power and benefit from higher uncore frequencies for
better performance. In Fig. 1, we show execution time, energy,
and EDP for key affine programs with varying uncore frequency
caps on Pluto-tiled codes. We mark the maximum improvement
possible on various metrics.

Roofline-Aware Mathematical Model–Driven Characteri-
zation: Architecture-aware performance [101] and energy [20]

“bound and bottleneck” roofline models have been proposed
in the literature, and these (per-micro-architecture) roofline
models encode key information that can be exploited for per-
formance improvements. There is a necessity for performance
and power characterization that utilize this information for
compiler optimizations. The next challenge naturally arises:
[C2] mathematical modeling based estimation of runtime
performance, bandwidth and power consumption for roofline
based characterization of programs. Such an estimate should
be parametrized by uncore frequencies.

Characterization-Aware Performance Optimizations CB
programs (with high operational intensity), generally require

979-8-3315-9288-2 © 2026 The Authors, Licence CC-BY-4.0.

Accepted for publication by IEEE. © 2026 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/ republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

563

https://orcid.org/0000-0001-7631-0644
https://orcid.org/0009-0004-1547-2227
https://orcid.org/0009-0006-6211-2771
https://orcid.org/0000-0002-5290-3266

0.0 2.5 5.0 7.5 10.0 12.5 15.0

14.8

16.3

E
ne

rg
y

(J
)

£10−1

1.2

2.5

2.6

£10−2

2.5

1.2 1.7 2.2 2.8

Uncore Frequency (GHz)

3.8

4.1

E
D

P
(J
¢s

)

£10−2

(a)

1.2

0.0 2.5 5.0 7.5 10.0 12.5 15.0

160.3

171.9

£10−1

1.3

20.1

20.9

£10−2

2.8

1.2 1.7 2.2 2.8

Uncore Frequency (GHz)

330.2

346.2
£10−2

(b)

1.7

0.0 2.5 5.0 7.5 10.0 12.5 15.0

3.6

4.3

£10−1

2.2

0.9

1.2

£10−2

2.6

1.2 1.7 2.2 2.8

Uncore Frequency (GHz)

0.3

0.5
£10−2

(c)

2.4

0.0 2.5 5.0 7.5 10.0 12.5 15.0

2.0

2.6

£10−1

1.9

0.6

0.9

Ti
m

e
(s

)

£10−2

2.8

1.2 1.7 2.2 2.8

Uncore Frequency (GHz)

0.1

0.2

£10−2

(d)

2.1

Energy Time EDP Envelope (Energy) Envelope (Time) Envelope (EDP)

Fig. 1. Exec. time, Energy, and EDP across varying uncore frequency caps for representative kernels: (a) conv2d, (b) 2mm, (c) gemver, and (d) mvt; all
compiled with Pluto [13], and polynomial curve fitting applied to the medians. For CB workloads like conv2d and 2mm, the minimum EDP is observed
near lower uncore frequencies of 1.2GHz and 1.8GHz, respectively, which are much less than the peak 2.8GHz. For BB workloads like gemver and mvt,
optimal EDP (Energy) occurs at frequencies of 2.2GHz (1.9GHz) and 2.3GHz (2.1GHz), respectively. The max improvement possible is shown by dotted
vertical bars.

Fig. 2. Simplified flow of POLYUFC: Input programs (C/C++/PyTorch) are compiled to MLIR, lowered to MLIR’s affine dialect, and optimized (for
time/performance) using polygeist optimizer. POLYUFC calculates OI, followed by a program characterization, and searches for uncore frequency caps.
The output of POLYUFC is optimized for both performance and energy efficiency. It is lowered to MLIR’s scf dialect, translated to LLVM-IR, and compiled
into binaries with frequency caps.

less memory bandwidth and can be transformed to operate
efficiently at lower uncore frequencies, resulting in substantial
power savings. In contrast, BB programs (with low operational
intensity), demand higher bandwidth and thus can be trans-
formed to benefit from higher uncore frequencies to avoid
performance bottlenecks.
OI Necessity A compiler based characterization of programs

relies on Operational Intensity (OI), for positioning the
program vis-a-vis the rooflines, and measuring the effect of the
transformations. Several works [7, 8, 38, 85, 76] calculate cache
misses; however, they do not explicitly model OI as a means for
performance and power roofline-characterizations. This brings
us to our third key challenge for compiler researchers in [C3]
developing accurate estimations of Operational Intensity using
static analysis (and polyhedral compilation). Such an estimate
is essential for enabling a compile-time characterization, and
also removes the limitations2 of performance counters [91, 65],
or simulators [25, 43], both of which are prohibitively expen-
sive.

We introduce POLYUFC, the first compilation flow in MLIR
for uncore frequency capping, unifying roofline-aware perfor-
mance and power characterization with polyhedral compilation
based cache analysis. Our main contributions are:

• A static analysis based calculation of Operational Intensity
for affine programs, driven by POLYUFC-CM, a polyhe-

2Overheads in runtime, and dependence on SW/HW support from vendors.

dral compilation based approximate cache miss analysis
for set-associative caches. (Sec. IV)

• A mathematical model based on polyhedral compilation
techniques combined with roofline analyses3 to obtain
performance and power characterization (CB or BB) for
affine programs on modern CPUs. Applying the above for
estimating performance, bandwidth and power with uncore
frequency (f) + Operational Intensity (I) as parameters.
(Sec. V)

• ML-POLYUFC, a framework that enables multi-level
MLIR-dialect-aware compilation-flow that encapsulates
analysis and application of POLYUFC techniques; and
a simple algorithm that enables to apply POLYUFC for
different metrics, like performance-only, performance and
power, EDP. (Sec. VI)

• An experimental evaluation of POLYUFC for uncore
frequency capping on programs from vision and NLP do-
mains, like conv2d, matmul from ALEXNET, LLAMA2
respectively, and POLYBENCH. In particular, we compare
against the Intel Uncore Scaling driver, on which we
obtain: (i) minimal performance loss of ≈ 7% on
CB workloads, and up to 42% EDP improvement. (ii)
performance improvements of upto ≈ 30%, and EDP

3Performance rooflines [72] are usually made available by hardware vendors.
In this work, we need both performance and power rooflines. So, we rely on
our own one-time micro benchmarking.

564

improvements of up to ≈ 54% on BB. (Sec. VII)
In Fig. 2, we show a simplified flow of our proposed

POLYUFC.

II. BACKGROUND

In this section, we introduce the terms used in this work
related to performance and power modeling, along with the
mathematical terms used in formulation.

A. Affine Programs
We model affine control programs, including affine loop

bounds and branches, i.e., all the constraints are conjunctions
and disjunctions of the form a1×x1+· · ·+an×xn ≥ c, where
the branches are independent of the data accesses and all the
memory accesses involve indexes which are affine functions
of the loop iterators and symbolic constants. This class of
programs includes image processing, scientific programs, and
neural network applications from vision or NLP (like ALEXNET,
BERT, LLAMA2). We refer affine programs as affine kernels,
benchmarks in different sections of the paper.

B. Polyhedral Compilation
Polyhedral compilation [30, 31, 77, 78, 13, 3, 64] is

a powerful technique for analyzing and optimizing affine
programs involving nested loops and arrays. It represents
program elements as geometric objects called integer polyhedra,
enabling advanced transformations. At the core of many
polyhedral compilation frameworks is the Integer Set Library
(isl) [96], which provides efficient manipulation of sets and
relations of integer points bounded by linear constraints. isl
supports operations such as intersection, union, and projection
on these sets and relations, making it an essential tool for
program analysis and transformation. For instance, a simple
loop with bounds for(i=0;i<n;i++) can be described by
the affine set: [n] → {[i] : 0 ≤ i ≤ n}, i ∈ Z. Integer sets
support various operations like intersection, union, difference,
projection, and cardinality. Relations between pairs of integer
tuples that satisfy affine constraints are defined as integer
maps: [n,m] → {[i, j] → [i] : 0 ≤ i < n, 0 ≤ j < m}. In
addition to various set operations, these maps support inversion,
composition, and domain intersection.

C. Set-Associative Caches and Cache Misses
For LLC with k-way set associative cache, we have k cache

lines in a single set. Cache misses are categorized [44] into
three types: compulsory/cold misses, that occur the first time
a program accesses a cache line; capacity misses, that occur
when the cache is too small to hold the working set of blocks,
causing blocks to be evicted and later reloaded; and conflict
misses, that occur when multiple blocks map to the same cache
set, leading to unnecessary evictions.

D. Operational Intensity
The Operational Intensity (OI or I) of a program is defined

by the number of floating point operations executed per byte
transfer by considering the data movement between the Last
Level Cache (LLC) and DRAM. I is typically calculated in
FLOP-per-Byte (FpB).

E. Roofline Models for Performance and Power

The “Original“ Roofline Model [101] is a widely adopted
analytical framework for identifying computational bottlenecks
in software-hardware systems. It correlates the Operational
Intensity (measured in FpB) of an application vis-a-vis
the theoretical peak performance of the target architecture,
providing a graphical representation with two fundamental
ceilings; a horizontal compute roof, determined by the system’s
FLOP/s and a diagonal memory roof, constrained by the
system’s memory bandwidth. By comparing the achieved
performance of a program against these ceilings, the model
reveals whether it is compute-bound (bottleneck is FLOPs
per sec) or bandwidth-bound (bottleneck is bandwidth, Bytes
per sec). This insight guides optimizations for both software
efficiency and architectural design.

Extending this, Choi et al. [20, 19] introduced the Energy
Roofline Model, for energy bottleneck analysis. Its smooth

“arch curve” captures the effects of static and dynamic power,
enabling direct tradeoff analysis between performance and
energy efficiency. In Tab. I, we show roofline constants defined
for modeling execution time and power/energy.

TABLE I
PERFORMANCE/POWER ROOFLINE CONSTANTS AND THEIR

DESCRIPTIONS

Constants Description
tFPU / tbyte Time taken per floating-point-operation/byte-

transfer
Bt

DRAM /Be
DRAM Time/Energy balance with respect to DRAM

eFPU / p̂FPU Energy/Peak power per flop
ebyte/ p̂byte Energy/Peak power per byte transfer
pcon Constant power

F. Frequency Capping

Power consumption scales linearly with frequency and
quadratically with voltage (P ∝ f · V 2). Frequency cap-
ping [54, 73, 4] is a technique proposed to limit the usage
of dynamic power. It is applicable across different “energy
zones” like core/uncore to reduce over-provisioning of peak
power consumption. It comes under the broad category of

“power capping” technologies [108, 83, 62, 81, 74]. Power
capping has advantages like “interval based power limiting”,
and “execution time window”, while frequency capping does
not. More crucially, power capping cannot be applied to only
uncore, while frequency capping can be.

Frequency scaling [103, 102, 7, 41] is a more estab-
lished technology that dynamically adjusts the frequency fs
based on workload demands to balance performance and
power consumption. However, such scaling techniques often
do an overprovisioning: setting scaling frequency fs to a
value significantly higher than the saturating frequency fc,
beyond which the performance gains are negligible; i.e.,
fs ≫ fc. To mitigate this inefficiency, frequency capping
constraints the maximum allowable frequency fmax such that
fmax ≤ fc, thereby avoiding unnecessary energy expenditure
without sacrificing performance. Currently available frequency

565

drivers [56, 57, 55, 68] from various vendors allow scaling
techniques by the end-user.

III. OVERVIEW OF POLYUFC

In Fig. 3, we show the detailed overview of the
POLYUFC compilation flow. Input programs in C/C++ are
compiled to MLIR modules using cgeist, the frontend
of Polygeist [64]; while PyTorch-programs are compiled
using torch-mlir [61] frontend. POLYUFC lowers the
input MLIR code from the linalg [60] dialect to the
affine dialect [59], enabling polyhedral optimizations using
polygeist [64] compiler. Affine loops are tiled using the
Pluto [13] compiler and the code is converted to OpenSCoP [9]
and PET [97] representations for analyses. We characterize
the code using our proposed cache model POLYUFC-CM and
derive a mathematical model for estimating the performance,
bandwidth and power consumption of the input program with
(uncore) frequency as a parameter. Finally, we search and
embed the obtained frequency caps in the affine IR.

IV. CHARACTERIZATION OF AFFINE PROGRAMS

In Sec. IV-A, we discuss POLYUFC-CM, an approach to
model set-associative cache behavior to calculate the data
movement cost of an affine program. In Sec. IV-B, we discuss
the counting of various cache misses. In Sec. IV-C, we compute
the Operational Intensity (I) of programs using POLYUFC-
CM. In Sec. IV-D, we discuss about how an affine program
can be (bottleneck) characterized as CB/BB bound.

A. An Approximate Set-Associative Cache Model

We model inclusive, set-associative caches that use LRU
replacement policy, with write-allocate and write-through
policies. To model set-associative caches, we use integer sets
and relations from isl [96], and symbolic counting using
barvinok [98] of integer sets and relations. First, an access
map is used that maps the statement instances of a statement
(s0) to the memory accesses of an array. Then, we model
associativity for multi-level caches with additional dimensions
for the index of the line and cache set in the access map Aci

with ci being the cache level, 1 ≤ i ≤ N where N is the
number of cache levels. For Code. 4(a), we have the access
map (Aci), for statement s0 parametric in d input dimension,
Aci = {s0(d) → B(d, line = ⌊(d · e)/ℓ⌋, set = line%Nci); }
and schedule map (S) for statements s0, s1 as follows:

S = {s0(d) → (0, d); s1(d) → (1, d)} ∩ D
where, ℓ is the cache line size, e is the element size in bytes
and Nci is the number of cache sets in cache level ci. Both
maps are constrained by the iteration domain D. Our model
explicitly accounts for all three types of cache misses in set-
associative caches, enabling us to accurately estimate cache
miss rates under these assumptions. To model capacity/conflict
misses, we show the formulation4 for obtaining the reuse pairs
of each cache set to calculate reuse distances [11, 12].

4We make some simplifying assumptions for modeling data-caches: no
hardware prefetching, empty initial cache, and homogeneous cache associativity

Forward and Backward Reuse Distance Maps The
forward map (Fci) links each schedule point to all lexicograph-
ically larger or equal points (L⪯) that access the same array
element within the same set (Fig. 4). Similarly, the backward
map (Bci) connects each point to all lexicographically smaller
points, also restricted to the same set:

Fci = lexmin((Sci ◦ S−1
ci) ∩ L≺)

−1 ◦ L⪯

Bci = S ◦ {(j) → (i) | j ⪰ i} ◦ S−1

Where, ◦ is integer relation composition and same-set successor
map is used to obtain accesses to the same set, defined as
St,ci = {(Sci ◦ S−1

ci)∩L≺} with Sci maps schedule values to
the memory accesses computed as {S−1 ◦Aci}.

We compute the intersection of access maps to capture all
iterations between two memory accesses. Fig. 4 shows reuse
pairs in the same set (Fci ∩ Bci). The reuse distance RDci

is derived by composing access and reuse maps, identifying
all intervening statements: RDci = (Fci ∩ Bci) ◦ Aci .
After obtaining the reuse pairs for the target associativity, we
calculate the new set of capacity/conflict misses.

B. Counting Cache Misses

We discuss the computation of compulsory misses, and then
of the capacity and conflict misses.

Counting Compulsory/Cold Misses We use Aci to obtain
all the first schedule values to each memory element i.e.,
accesses with lexicographically minimal schedule value defined
as COLDMISS = lexmin(Aci

−1 ◦S) ◦S−1. Cardinality of
COLDMISS counts the total compulsory misses.

Counting Capacity and Conflict Misses Using RDci , we
model the conflict misses defined as all the accesses that are
mapped to the same set. We count the reuse distances larger
than kci · ℓ

e , where kci is associativity of cache level ci as
follows: Mci = {RDci > kci · ℓ

e}.
The cardinality of Mci , |Mci | counts the total of capacity

and conflict misses.5 When the Mci is non-empty, and all
the cache-sets are occupied in the cache, then the misses are
categorized as capacity misses. Otherwise, they are categorized
as conflict misses. With write-allocate and write-through, all
misses at level ci result in read accesses to ci+1, and all writes
are also forwarded to ci+1.

Further, total cache misses at cache level ci are calculated as
|COLDMISS|+ |Mci |. For example, LLC data cache misses
can be calculated as MissLLC = |COLDMISS|+ |MLLC |.

An (Approximate) Extension for Loop-Level Parallel
Programs: To model sharing of working set sizes across
threads, the total cache misses (of any category) are approx-
imated by dividing the sequential miss-count by the number
of OpenMP [22, 71] program threads. This simple heuristic
provides a first-order approximation, though it could miss inter-
thread conflict and coherence misses.

C. Calculating Operational Intensity (I)

The flop count is given by: Ω =
∑

s∈S ωs × |Ds|, where
s ∈ S is set of statements in the affine program; for a statement

5This could be a non-affine (polynomial) set that is parametric (in problem-
size); but, there exist efficient techniques [38, 85] to count these sets.

566

Fig. 3. Detailed flow of POLYUFC: (1) Input programs (C/C++/PyTorch) are compiled to MLIR modules, and lowered to MLIR in affine and memref
dialects. (2) Lowered programs (in MLIR) are converted to OpenScop using polygeist-opt compiler, that also applies Pluto optimizations (tiling and
parallelization). POLYUFC then analyzes these affine MLIR programs, with our proposed pass-pipeline. (3a) POLYUFC-CM calculates the total cache miss
count for the target platform cache parameters (cache&line-size). (3b) flop counting algorithm calculates Operational Intensity (OI). (4) Use performance/power
rooflines to do (bottleneck) characterization. (5) Estimate execution time and average/peak power using mathematical model with uncore frequency (fc) and OI
as parameters. (6) Search for best uncore frequency cap based on the (bottleneck) characterization.

for(int d=0; d≤4; d++)
s0: B[d] = 3;

for(int d=8; d≥4; d--)
s1: B[d-4] = 1;

(a) (b)
Fig. 4. Illustration of (a) an example affine program and, its corresponding
(b) forward/backward distance maps.

s, the cardinality of iteration domain is |Ds|, and the number of
arithmetic operations is ωs. The total data movement between
LLC and DRAM in bytes is QDRAM = MissLLC · ℓ. We
obtain I (measured in FpB) as follows:

I =
Ω

QDRAM
(1)

D. Kernel Characterization Using Rooflines

We evaluate the value of Operational Intensity (I) against
both performance and power roofline boundaries to determine
the bound and bottleneck characteristics of the program.
So, the I metric provides crucial insights into the compute
and bandwidth characteristics of the program. Based on
the relationship between I and the time machine balance
(Bt

DRAM), programs are classified as follows:
• Compute-Bound (CB): I ≥ Bt

DRAM : These kernels
are limited by computational capacity. Their performance
scales primarily with processor computational power rather
than memory bandwidth.

• Bandwidth-Bound (BB): I < Bt
DRAM : These kernels

are limited by memory bandwidth. Their performance
scales primarily with memory bandwidth rather than
computational resources.

V. PARAMETRIC PERFORMANCE/POWER ESTIMATION

In this section, we propose a mathematical model that
estimates performance, bandwidth and power, with uncore
frequency cap (fc), and Operational Intensity (OI or I) as

parameters under the given performance and power roofs. In
Sec. V-A, we discuss estimation of performance and bandwidth
of an affine kernel with fc and I as parameters. In Sec. V-B,
we discuss estimation of uncore power and energy.

A. Performance and Bandwidth
We estimate the performance and bandwidth for affine pro-

grams on a target architecture by decomposing total execution
time (Tfc,I) into computation time (TΩ

I) and memory time
(TQ

fc,I); each are parameterized by uncore frequency cap (fc)
and Operational Intensity (I). Computation time TΩ

I is based
on total FLOPs and FPU throughput at a fixed core frequency.
And, time taken by data movement TQ

fc,I is derived from cache
analysis (Sec. IV-A); this accounts for both cache hits and
misses to accurately estimate data movement costs between
the processor core and DRAM.

Tfc,I = TΩ
I + TQ

fc,I (2) TΩ
I = Ω · tFPU (3)

TQ
fc,I =

N∑
i=1

i−1∏
j=1

ρmcj · ρ
h
ci

 ·Qci · Hci

+

 N∏
j=1

ρmcj

 ·QDRAM · Mt
fc,LLC

(4)

The total time (Eqn. 2) combines computational latency from
floating-point operations (Eqn. 3) and data movement average
latency (Eqn. 4). We compute the level-wise cache miss ratios
(ρmci) and cache hit ratios (ρhci), each for level i where, 1 ≤ i ≤
N and N is number of cache levels using our POLYUFC-CM,
while deriving DRAM miss penalty (Mt

fc,LLC) with fc as a
parameter as shown below: Mt

fc,LLC ∝ 1
fc

= a
fc

+ b where,
a and b are constants of the curve.

Hit latency (Hci) is determined using the performance
roofline model’s tbyte at (maximum non-turbo) base core fre-
quency. Note: all uncore time and power variables are explicitly
parametric on fc to enable a systematic analysis/exploration
of uncore capping effects. Further, using Eqn. 2, we calculate
the performance (Perffc,I) and bandwidth (BWfc,I) of the
input program as shown below:

Perffc,I =
Ω

Tfc,I
(5) BWfc,I =

QDRAM

Tfc,I
(6)

567

B. Uncore Power and Energy

We estimate uncore power consumption using established
roofline constants [20] for DRAM (P̂DRAM and Bt

DRAM) com-
bined with our computed OI (I). For a multi-core processor,
total power consumption consists of three components:

Pfc,I = pcon + P core
I + Puncore

fc,I (7)
Where pcon represents static power [16], while P core

I and
Puncore
fc,I represent the dynamic power consumption of core

and uncore components, respectively. The total peak power
(ceiling) estimation is specialized based on the characterization
of the kernel (as CB or BB):

P̂fs,I = pcon +

{
P̂fs,DRAM · Bt

DRAM

I + p̂FPU ⇝ CB

P̂fs,DRAM + p̂FPU · I
Bt

DRAM
⇝ BB

As I increases beyond Bt
DRAM , peak-power for CB ap-

proaches flop-only peak power p̂FPU , and for BB it approaches
bandwidth-bound peak power P̂fs,DRAM . To account for
different uncore frequencies, we approximate the peak power
per byte of roofline variable P̂fs,DRAM as a linear function
of fs, where αP̂ and γP̂ are constants derived from its linear
curve fitting. This leads to:

P̂fs,I = pcon +

{
(αP̂ · fs + γP̂) ·

Bt
DRAM

I + p̂FPU⇝CB

(αP̂ · fs + γP̂) + p̂FPU · I
Bt

DRAM
⇝BB

(8)
Further, to estimate the total power consumption of an affine

program, we estimate the average total power as follows6:

Pfc,I = pcon +

{
QDRAM ·Mp

fc,LLC
·B

t
DRAM

I + p̂FPU ⇝CB

QDRAM ·Mp
fc,LLC

+ p̂FPU · I
Bt

DRAM
⇝BB

(9)
Let Mp

fc,LLC
denotes the power consumed to serve a miss

penalty in the LLC at frequency fc. Utilizing the miss penalty
power from microbenchmarks (such as pointer chasing) ensures
the power estimates are an upper bound for average power.
Using curve fitting, we model this power as a function of fc.
To use the above equation for uncore frequency capping7 we
require estimating the upper bound for dynamic power of the
uncore (Puncore

fc,I) with I, fc as parameters; while the dynamic
power of the core (P core

I) is obtained with a fixed base core
frequency as follows:

Pfc,I = pcon

+

QDRAM ·
(
αP · fc + γP

)
· Bt

DRAM

I + p̂FPU⇝CB

QDRAM ·
(
αP · fc + γP

)
+ p̂FPU · I

Bt
DRAM

⇝BB

(10)
The constants αP and γP are obtained from linear curve

fitting8 of Mp
fc,LLC

, similar to curve fitting of P̂fs,DRAM . Note
that quadratic curve fitting provides a more accurate estimate
by minimizing the error in power prediction.

6Note that Eqn. 9 is similar to the classic (energy) roofline equation [20]
except this is architecture and application specific, tuned for capping.

7This is in contrast to works [48, 7], that proposed core frequency scaling.
8Linear-Fitting is used for average-power Pfc,I as a reasonable approxima-

tion for modeling miss-penalty-power-estimation due to its monotonic-nature.

Total energy Using fc and I as parameters, we estimate
the total energy of the kernel using the proposed execution
time (Tfc,I) and total power (Pfc,I).

Efc,I = EΩ
I + EQ

fc,I = Ω · eFPU + TQ
fc,I · Pfc,I (11)

VI. ML-POLYUFC: MULTI-LEVEL APPLICATION OF
UNCORE FREQUENCY CAPS

In this section, we present how our POLYUFC compiler
can be extended as a ML-POLYUFC9 framework, that can
be used to apply the frequency capping at multiple levels of
granularities of MLIR dialects, at multiple transition points
(phase-changes) in the program, and with multiple metrics
(performance-only, energy and EDP). In Sec. VI-A, using
the MLIR characterization pass (Sec. IV), we do a study
of granularity on some real-world affine programs, both
across/inter dialects. Then, in Sec. VI-B, we explore different
methods and trade-offs for applying frequency caps across
MLIR dialects, and show that linalg emerges as the natural
choice for phase change analysis. Then, in Sec. VI-C we
sketch a simple search algorithm that guides the selection of
best uncore frequency caps, balancing performance and energy
efficiency.

A. A Study of Multi-Level Granularity: Across Inter/Intra
Dialects

We study the phase change problem across MLIR dialects;
then, the changes that occur within the linalg dialect.

Phase Changes Across Inter Dialects: As shown in Fig. 5,
high-level PyTorch [5] operations like sdpa (a key computa-
tional Op in bert [24] with CB/BB regions) decompose into
multiple linalg operations (e.g., element-wise and matrix
multiplications), which are further lower (linalg→affine)
to multiple perfectly-nested affine loop-nests.

Phase Changes in Intra (linalg) Dialect: A study
on untiled implementation of sdpa from BERT reveals the
following pattern10: CB → BB∗ → CB, where the middle
BB∗ section spans 7 linalg Ops in length. The initial and
last CB are matmul. While characterization at the torch-IR
level reveals the sdpa operation as BB due to low OI from
matmul layers, the fine-grained linalg-IR analysis reveals
CB phases in the structured Ops.

From the above real-world examples, it can be seen that
the nested IR levels of MLIR exposes distinct multi-level
computational phases, resulting in different kinds of phase
transitions in the torch, linalg, and affine dialects. This
creates a complex landscape for frequency cap optimization.
Therefore, these phase changes highlight the need for a granular,
dialect-aware frequency capping strategy, which avoids both
over-provisioning or under-utilization of the bandwidth.

9Here, ML itself has multi-level meanings, and the similarity of this naming
to the popular MLIR compiler [53] is apparent.

10We use regular expression notation using Kleene star [50].

568

affine.for %a3 = 0 to 128 {
 affine.for %a4 = 0 to 128 {
 affine.for %a5 = 0 to 64 {
 ...

 %9 = arith.mulf %7, %8 : f32

 %10 = arith.addf %9, %arg7 : f32

 affine.store %10, %alloc[%a3,%a4,%a5]:

 memref<24x128x128xf32>
 }
 }
}

nn.Linear()
nn.Linear()
nn.Linear()
nn.Dropout()

%4 = linalg.batch_matmul
ins(tensor<24x128x64xf32>,
tensor<24x128x64xf32>,t<24x64x128xf32>)
outs(tensor<24x128x128xf32>)->
tensor<24x128x64xf32>
%5 = linalg.generic {...} ins(
tensor<24x128x128xf32)
outs(tensor<24x128x128xf32>)
{%7 = arith.divf %6, %cst : f32 ..}
-> t<24x128x128xf32>
...
%16 = linalg.generic {...}
ins(tensor<24x128x128xf32>,t<24x128xf32>)
outs(tensor<24x128x128xf32>){
%17 = arith.divf %cst_2 : f32
%18 = arith.cmpf %in, %42 : f32 ...}
...
%22 = linalg.batch_matmul
ins(tensor<24x128x64xf32>,
tensor<24x128x64xf32>,tensor<24x64x128xf32>)
outs(tensor<24x128x128xf32>)->
tensor<24x128x64xf32>

torch.sdpa

affine.for %a3 = 0 to 128 {

 affine.for %a4 = 0 to 128 {

 ...
 %22 = arith.divf %21, %cst : f32

 affine.store %22, %alloc[%a3,%a4,%a5]

 :memref<24x128x128xf32>
 }
}

torch(IR) linalg(IR) affine(IR)Pytorch

sdpa

Lowering

Fig. 5. Illustration of phase changes of characterization for scaled dot
product attention (sdpa) from BERT across torch, linalg, and affine
dialect IRs. (CB and BB)

B. Dialect-Aware Frequency Cap Strategies: for Analysis and
Application

Analyzing and applying frequency caps is challenging due to
phase changes that occur across multiple IR levels and within
individual dialects.

Granularity for Analysis Given the affine structure of our
input programs, and our static analyses that rely on polyhedral
analysis and tools [96, 13, 64], the affine-IR (of MLIR)
emerges as the natural choice to calculate OI and to obtain
estimations of performance and power. This level of granularity
enables detailed insights necessary for the effective application
of frequency caps across various MLIR dialects. Owing to
the composability and modularity of MLIR, affine-level
analyses can be propagated and utilized within higher-level
dialects such as linalg and torch.11

Granularity for Application The granularity at which
frequency caps are applied plays a critical role in performance.
Applying frequency caps at the torch-dialect is suboptimal
due to the encapsulation of multiple CB/BB phases within a
single torch Op, leading to coarse and imprecise control. On
the other hand, capping at affine-dialect incurs excessive
overhead from frequent changes at different affine loads,
stores and arith operations.

Choosing linalg-dialect capping aligns well with stable
computational/memory characteristics typically found within
linalg ops, also offering an effective trade-off between
control granularity and runtime overhead for efficient frequency
management. We assume the current analysis is applied post-
transformation on linalg/affine IR. In this context, all
Polygeist-Pluto optimizations are activated at the affine IR,
while optimizations based on LLVM IR utilizing the Polly
framework remain disabled.

C. Searching for Frequency Caps (POLYUFC-SEARCH)

Note that Eqns. 4, 10 are non-linear in fc and I. They
induce a non-convex search space. In addition, the energy
minimization or performance maximization (Eqn. 11) are also
non-linear. Obtaining the frequency caps that give the desired
improvements involves searching the above non-linear search

11Analysis on lower-level representations like llvm-ir is outside the scope
of this work.

space. Rather than applying convex relaxations [10], we employ
a binary search strategy guided by bottleneck characterization,
which enables identification of energy-efficient frequency
settings. The search space is explored using performance and
bandwidth estimates (Eqns. 5, 6), with optimization guided by
energy-delay product (EDP) and the bandwidth/performance
gains. EDP is computed using Eqns. 2 and 11, and a cost
function is used to balance energy and execution time across
different bottleneck types.

Search Our algorithm uses a simple binary search with
0.1GHz step size to select frequency caps based on program
type: for CB operations, it searches lower frequencies to
prioritize energy efficiency when performance loss is within a
tunable threshold (< ϵ). Here, power scales linearly with fc
but nonlinearly with I (from Pfc,I ∝ fc

I). Higher I reduces
memory accesses, lowering uncore power consumption. For
BB operations, it searches higher frequencies to prioritize
performance when bandwidth and performance gains are
aligned. Here, power scales linearly with both fc and I (from
Pfc,I ∝ fc + I) as increased fc raises uncore activity, while
higher I increases computations per memory access. For each
frequency setting, relative changes in performance, bandwidth,
and EDP are evaluated as ∆Perf = Perfnew

Perfold
, ∆BW = BWnew

BWold
,

and ∆EDP = EDPnew
EDPold

, respectively. These metrics drive the
search process, enabling architecture-aware tuning. The search
terminates when the frequency stabilizes between iterations
or the search space is exhausted. While the method focuses
on EDP, it also supports energy-only or performance-only
optimization objectives.

Tuning POLYUFC-SEARCH: A tunable threshold ϵ guides
POLYUFC-SEARCH by comparing Perf and BW changes.
For CB programs, fc is reduced if performance loss does not
exceed BW loss by more than ϵ, enabling energy savings.
For BB programs, fc increases only when Perf gains match
BW gains within ϵ, ensuring efficient capping. Adjusting ϵ
balances energy efficiency and Perf across programs and
µ-archs. Moreover, POLYUFC-SEARCH can be extended to
frequency scaling by tuning EDP and total power (Eqn. 10).

VII. EXPERIMENTAL EVALUATION

In this section, we first give some implementation details of
our POLYUFC system (Sec. VII-A): including our algorithms
to calculate OI, our mathematical modeling, and some code
generation details. We then explain our experimental setup
in Sec. VII-B: this includes our experimental platforms of
our two x86 micro-architectures. We carefully selected an
illustrative set of benchmarks (Sec. VII-C) to show a variety
in the compute/memory boundedness to evaluate our proposed
uncore frequency capping technique. We show the results on
characterization of benchmarks for performance and power
(Sec. VII-D). Using the characterization and the proposed
ML-POLYUFC in Sec. VI for uncore frequency capping, we
compare the EDP of benchmarks with the available Intel uncore
scaling driver on the target platforms (Sec. VII-E). Finally, we
discuss the findings in relation to existing techniques and their
broader implications (Sec. VII-F).

569

A. Implementation of POLYUFC

a) Operational Intensity (I): We implemented Eqn. 1
calculations as analyses passes using Integer Set Library (isl-
0.27) [96] and barvinok [98] (version 0.41.8) libraries12. We
integrate them as MLIR pass within Polygeist [64, 63] compiler
using llvm-18. This enables our framework to automatically
analyze MLIR code containing affine control loops, facilitating
precise static analysis of memory behaviors13.

Implementation for characterization and modeling is
written as a MLIR pass which take roofline variables14 as
inputs, parametric in fc. In addition, it takes I , and the metrics
computed by POLYUFC-CM (QDRAM , ρhci , ρ

m
ci , Ω) as param-

eters. It analyzes the polyhedral IR and applies characterization
on each polyhedral statement within an affine loop.

Code Generation Caps are applied based on the characteriza-
tion of the top-level affine Op or linalg Op i.e, min (max)
of all caps for statements for CB (BB). Using our performance,
bandwidth, and power models parameterized by frequency fc,
we implement a search algorithm (Sec. VI-C) in MLIR that
inserts func calls to set frequency caps before each top-level
affine for Op. We use pattern-rewrite optimizations to
remove redundant frequency caps.

We enable parallelism using the Polygeist-Pluto optimizer
and affine-parallelize pass in MLIR, and then lower
the code with the scf to openmp pass. Finally, the code is
lowered and translated to LLVM-IR, which is then compiled
for execution on the target machine.

TABLE II
BENCHMARKS: (A) SELECTED MLIR KERNELS (⊗) CONV2D

(nchw fchw), LM-HEAD-MATMUL , AND SCALED DOT PRODUCT
ATTENTION (SDPA). (B) POLYBENCH [79] WITH LARGE PROBLEM SIZE.

Prog. Source Problem Sizes
ALEXNET 1×3×224×224; 64×3×11×11
CONVNEXT 1×384×28×28; 768×384×2×2

conv2d⊗
WIDERESNET

64×1024×7×7;
2048×1024×1×1

BERT 2×12×128×64
sdpa⊗

GEMMA2 1×16×7×256
GPT2 4×768×50257

matmul⊗
LLAMA2 13×4096×32000

TABLE III
MICROARCHITECTURES USED AS PLATFORMS

Arch Released CPU Core
(GHz)

Uncore
(GHz)

Broadwell
(BDW) 2015 Xeon 1650-v4

(6C/12T) 1.2-4 1.2-2.8

Raptor Lake
(RPL) 2023 Intel i5-13600

(14C/20T) 0.8-5 0.8-4.6

12As of the writing of our paper, barvinok library [98] is the only complete
implementation for counting parametric integer sets and relations.

13Note that this method assumes unitary model, all operations are considered
to have the same flop-count; it does not take into account the difference
between individual low-level (arith-dialect/math-dialect) operators (like
addf, mulf, divf) , and types (like f16, f32) of operands.

14We generate roofline microbenchmarks [19] for different intensities ranging
from 0–106. Each PAPI [65, 47] event runs for 210 iterations[1].

B. Experimental Setup

Our compiler baseline is parallel tiled kernels optimized with
Pluto [15] (v0.11.4, using default tile-size = 32). Our hardware
baseline is the default Intel uncore scaling driver. The platforms
run on Ubuntu 24.04, with various modern Intel (x86) CPUs.
In Tab. III, we show the target platforms for benchmarking
and their core and uncore frequency ranges. We use Intel
UFS driver [57] that also allows setting capping frequency fc;
this enables a limited set of uncore frequencies. For other
frequency domains, we use existing hardware drivers like
Intel P-state [56] for core with performance governor setting.
For characterization (Sec. VII-D) as CB/BB, we disable data
prefetchers and hyperthreading. For performance and energy
numbers (Sec. VII-E), it is on by default.

C. Evaluation Benchmarks and Justification

We highlight the characterization of the selected kernels
(CB and BB) in Tab. II. The selected affine programs present
a diverse mix of CB/BB access patterns, allowing for a system-
atic study of how frequency capping impacts the energy and
performance profiles. POLYBENCH [79] kernels (e.g., gemm,
mvt, 2mm) are widely used in benchmarking. Layers—like
conv2d [52, 105, 58] (inference), matmul [24, 90] (language
modeling head), and sdpa [82, 92] (self-attention)—are affine
programs derived from important models (lowered to linalg
Ops ⊗) taken from vision and language domains representing
real-world deep learning applications. They are highly relevant
because modern server and AI workloads are sensitive to both
memory subsystem and interconnect performance, that are
primarily governed by the uncore domain [34].

D. Characterization of Programs Using Rooflines

In Fig. 6, we present static roofline characterization obtained
using POLYUFC, comparing them with the hardware numbers
generated by Pluto tiled-parallel; at minimum core and max-
imum uncore frequency settings. We also show POLYUFC
generated frequency-capped code along with the roofline
estimates. We estimate performance using Eqns. 5 and 6. Power
roofs for all uncore frequencies are constructed using Eqn. 8,
and total power is estimated using Eqn. 10. We validate our
characterization by comparing it with performance and power
data obtained from PAPI [65, 47] performance counters and
runtime measurements. Below are some key observations for
the RPL platform:

• CB: The OI characterization matches hardware re-
sults for all benchmarks, classifying them as CB. For
conv2d (⊗) from CONVNEXT, performance estimates
differ by less than 7% from hardware. Among the
22 kernels, 13 are characterized as CB in POLY-
BENCH, primarily matrix–multiplication routines from
blas/kernels/solvers, together with data-mining
kernels and low-bandwidth stencils such as jacobi-1d.

• BB: Based on the OI characterization, all benchmarks
are correctly classified as BB. Among the 22 kernels,
nine are characterized as BB in POLYBENCH, mainly ma-
trix–vector products from blas/kernels/solvers,

570

10−3

10−1

101

103

br
oa

dw
el

l
G

FL
O

P/
s

conv2d sdpa lm-head-matmul

101 102 103 104 105

101

102

br
oa

dw
el

l
Po

w
er

 (W
)

101 102 103 101 102 103 104

10−3

10−1

101

103

ra
pt

or
la

ke
G

FL
O

P/
s

101 102 103 104 105

Operational Intensity (FLOPs/Byte)

100

101

102

ra
pt

or
la

ke
Po

w
er

 (W
)

101 102 103 101 102 103

DRAM roof (max)
DRAM Roof (capped)

PolyUFC (max)
PolyUFC (capped)

HW (max)
HW (capped)

(a)

1 101
10−4

10−2

100

102

104

G
FL

O
P/

s

gmv gsmv

Blas

gemm
gemver (gmv)
gesummv (gsmv)

syr2k
syrk
trmm

1 101

10−4

10−2

100

102

104

atax

bicg
mvt

Kernels

2mm
3mm
atax

bicg
doitgen (doge)
mvt

0.1 1 101

10−4

10−2

100

102

104

tsv

Solver

cholesky (chl)
durbin (dbn)
gramschmidt (gsht)

lu
trisolv (tsv)

0.1 1 25.0

10−4

10−2

100

102

104

adi

drc

f-wl

Others

adi
correlation (corl)
deriche (drc)

floyd-warshall (f-wl)
jacobi-1d (j1d)

1 101
0

25

50

75

Po
w

er
 (W

)

gmv
gsmv

1 101
0

25

50

75

atax
bicg

mvt

0.1 1 101
0

25

50

75

tsv

0.1 1 25.0
0

25

50

75 adi

drc
f-wl

101 102 103 104

101

102

G
FL

O
P/

s

gemm

syr2k
syrk

trmm

101 102 103 104

101

102

2mm
3mm doge

7.0 102 103 104
10−1

100

101

102

chl
dbn

gsht

lu

7.0 102 103

10−1

100

101

102

corl j1d

101 102 103 104

101

102

Po
w

er
 (W

)

gemm

syr2k

syrk

trmm

101 102 103 104

101

102

2mm
3mm

doge

7.0 102 103 104

101

102

chl

dbn

gsht

lu

7.0 102 103

101

102

corl
j1d

Operational Intensity (FLOPs/Byte)

PolyUFC (max) PolyUFC (capped) HW (max) HW (capped)

(b)
Fig. 6. Performance and Power characterization: (a) conv2d (CONVNEXT), sdpa (BERT), and lm-head-matmul (LLAMA2) on BDW/RPL. Vertically,
from top (BDW) to bottom (RPL), the characterization of affine programs shifts from BB → CB due to larger cache sizes and higher bandwidth in the uncore
subsystem of RPL. Horizontally, the shift towards BB behavior is driven by increased data movement and higher bandwidth demands. (b) POLYBENCH on
RPL for different categories of kernels. Vertically, from top to bottom, the characterization of programs shifts from BB → CB due to higher OI.

along with memory-intensive kernels such as deriche
and adi. RPL is better optimized for BB codes, as it pro-
vides a larger LLC cache and higher bandwidth. Kernels
characterized by low OI exhibit reduced computational
performance while demanding higher BW .

In summary, programs with high OI (conv2d (CON-
VNEXT), sdpa (BERT), gemm, jacobi-1d, durbin, 2mm
from POLYBENCH)are typically CB for large inputs, while
those with low OI (lm-head matmul (LLAMA2) and mvt,
gemver, trisolv from POLYBENCH) remain BB due to
their data movement demands. POLYUFC effectively identifies
these bottlenecks, guiding uncore search based on program
characterization.We note that all the evaluation benchmarks on
RPL are classified correctly. POLYUFC generated programs
consume lesser power for CB, and almost same power for BB,
as evident by the H/W measurements on RPL.15

E. Time, Energy, and EDP Comparison

In Fig. 7, we show EDP along with the performance
and energy improvements. The EDP comparison across Intel
micro-architectures (BDW and RPL) reveals that POLYUFC
generated code yields notable EDP improvements across
different characterizations. CB programs like conv2d benefit
the most, with EDP improvements up to 13% for WIDERESNET,
highlighting the effectiveness of uncore tuning for CB programs.
Other CB programs such as gemm, 2mm, durbin, and sdpa
also experience measurable gains, with improvements upto

15For BDW, we are able to show only the total power (including both core
and uncore). This is because of non-availability of “energy zone” for uncore
using RAPL [23, 49] for BDW micro-architecture.

42%. BB programs, including mvt and lm-head-matmul,
show improvements as well, achieving up to 27% and 12%,
respectively on RPL. For POLYBENCH, the geomean EDP
improves by 12% on BDW and by 10.6% on RPL, respectively.
We set ϵ = 1×10−3 for minimal tradeoff between Perf/BW
and Efc,I . These results indicate that while CB programs see
the highest relative gains, BB programs also profit significantly
from uncore frequency optimizations, underscoring the broad
applicability and impact of such techniques on both CB/BB
programs.

Performance and Energy Tradeoff CB programs such as
conv2d, gemm, and 2mm show up to a 2.5% performance loss,
but achieve energy savings of up to 14%. In contrast, BB pro-
grams like mvt and sdpa (GEMMA2) see performance gains
of up to 20% and similar improvements in energy efficiency on
RPL. For lm-head-matmul (GPT2) on BDW, performance
declines due to underestimated bandwidth requirements.

F. Discussion

Intra-Kernel DVFS and Inter-Kernel Capping Each
POLYUFC call on an operation/kernel results in setting the
uncore cap, incurring an average overhead of 35µs on BDW
and 21µs on RPL. In sdpa (GEMMA2), that is a multi-kernel
benchmark, there are 28 kernels with 28 inter-kernel frequency-
caps. On BDW, the overhead is ≈ 1ms, while on RPL it is
≈ 0.8ms (cumulative for all kernels). Fig. 7 demonstrates
that inter-kernel uncore capping achieves equivalent or better
performance than compared to only intra-kernel core/uncore
DVFS/DUS, while offering a simpler, lower-overhead imple-
mentation. This validates inter-kernel capping as a practical

571

−15

−10

−5

0

5

10

15

BDW

−2

0

2

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

alexnetconvnext
wideresnet

conv2d

−10

0

10

RPL

bert gemma2

sdpa

−20

0

20

gpt2 llama2
lm-head-matmul

−10

−5

0

5

10

%
 Im

pr
ov

em
en

t
%

 Im
pr

ov
em

en
t

%
 Im

pr
ov

em
en

t
%

 Im
pr

ov
em

en
t

%
 Im

pr
ov

em
en

t
%

 Im
pr

ov
em

en
t

Energy Time EDP

−15
−10
−5
0
5

10
15

BDW

11.2% 10.6%

−50

−25

0

25

50 48.7% 38.5%

2m
m

3m
m ad
i

ch
l

co
rl

do
ge

ge
m
m j1
d lu

sy
rk

tr
m
m

−10

−5

0

5

10

RPL

12.3% 11.08%

at
ax

bi
cg dr
c

db
n

f-w
l

gm
v

gs
m
v

gs
ht

m
vt

sy
r2
k

ts
v

−45

−15
−30

0

25

49.4% 54.1%

Fig. 7. Time, Energy and EDP comparison of affine programs on Intel micro-architectures. The baseline is Pluto tiled-parallel with the default Intel uncore
UFS driver and the Intel core P-state driver.

TABLE IV
COMPILE-TIME BREAKDOWN FOR BENCHMARKS IN TAB. II OF POLYUFC FLOW: PREPROCESSING (ST. 2 EXTRACTION), PLUTO (ST. 2 OPTIMIZER),

POLYUFC-CM (ST. 3A-3B), AND ST. 4–6 OF FIG. 3. TIME IS SHOWN IN MILLISECONDS FOR THE BDW CACHE CONFIGURATION.

Stages/Program co
nv

2d
-A

N

gp
t2

sd
pa

-B
ERT

co
nv

2d
-W

R
co

nv
2d

-C
N

lla
ma2

sd
pa

-G
2

2m
m

3m
m

ad
i

ata
x

bic
g

ch
ole

sk
y

co
rre

lat
ion

de
ric

he

do
itg

en

db
n

f-w
l

ge
mm

ge
mve

r
ge

su
mmv

gs
ht

jac
ob

i-1
d

lu mvt

sy
r2k sy
rk

tri
so

lv

trm
m

Preprocess 1 1 625 1 1 1 10 5 7 6 5 6 4 6 8 5 5 6 6 4 5 6 3 5 5 6 5 5 5
Pluto 454 88 1312 245 16196 190 39821 231 427 1092372 103 101 4172 374 49086 1227 323 797 116 96 93 491 100 6696 40 97 96 812 256
POLYUFC-CM 41753 30778 12794 1228 116200 26832 76224 8235 12157 181029 1594 1353 207300 11432 866 12376 934 1247000 3684 2942 949 8517 12772 1665118 6843 14922 5553 6280 5211
Steps 4-6 213 5 11 2 1 1 28 9 11 34 6 7 40 6 21 19 7 61 6 11 9 9 13 187 16 4 4 7 2
Total 42420 30872 14742 1476 132400 27024 116100 8486 12610 1273000 1715 1473 211600 11828 49995 13643 1276 1248000 3819 3059 1061 9031 12893 1672001 6911 15036 5666 7111 5482

and efficient approach for uncore power management, when
combined with core DVFS using the P-state driver [56, 46].

Core Frequency Selection Given that hardware P-state
drivers for core DVFS can override OS frequency settings,
POLYUFC prioritizes uncore power management via compiler-
directed caps. However, the POLYUFC remains adaptable and
can be used to manage the core frequency domain.

Compilation Overhead In Table. IV, we show the compile
time characteristics and the breakdown. For POLYBENCH, we
show the numbers for only 22 benchmarks; for the others16,
POLYUFC-CM times out, with the timeout value set as 30mins.
For kernels that overshoot, we reset the fc to maximum.
Presburger set manipulations can be computationally expen-
sive [32, 39, 67] for arbitrary expressions, and barvinok [98]
needs to count high-dimensional iteration domains returned by
Pluto tiling17.

EDP and Associativity In Fig. 8, we compare the estimated
EDP of Pluto-tiled-parallel implementations (using default
tile-sizes) for fully-associative and set-associative settings of
POLYUFC-CM, with hardware measurements. The selected
representative programs, gemm and 2mm, are key computational
kernels that incur high conflict misses and reveal variations
in estimated EDP across different uncore frequencies, thereby
necessitating a set-associative cache model. For gemm on BDW,
the set-associative configuration yields a 4.65% EDP gain at

16Polygeist [64] does not generate explicit auto-vectorization code as
performed by Pluto optimizer, as the existing affine dialect super-vectorizer
pass fails to generate vector IR.

17We use a custom duplicate elimination algorithm inside the reuse pair
polynomial calculation over the union of maps. This improves the overall
compile time by a 2.7x factor (geomean speedup).

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

Uncore Frequency (GHz)
0.3

0.4

0.5

0.6

0.7

0.8

E
D

P

(a) gemm

0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.6

Uncore Frequency (GHz)
0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
D

P

(b) 2mm
Fully Associative Set Associative HW

Fig. 8. EDP comparison for (a) gemm on BDW and (b) 2mm on RPL over
fc. Estimated values using Eqns. 4, 11 with fully and set associative settings
of POLYUFC-CM vs. HW measurements.

fc = 1.7GHz, while fully associativity results in 3% EDP gain
at fc = 1.2GHz. For 2mm on RPL, set associativity yields
a 0.55% EDP gain at fc = 2.2GHz, while full associativity
results in a 2.8% loss at fc = 1.1GHz.

Search Precision We set the search precision to 100MHz
increments within the permitted range of uncore frequencies.
This choice reduces the search steps to ≈ 39, enabling the
algorithm to converge more rapidly.

VIII. RELATED WORK

Frequency Capping: Li et al. [54] introduced frequency
capping to address over-provisioning issues in conventional
DVFS methods, and improve energy efficiency.

Cache Misses Various set-associative cache models [35, 17,
8] have been proposed that work for affine programs, though
POLYUFC-CM is the first cache model, to the best of our
knowledge, that is evaluated on tiled parallel programs.

572

PolyCache [8] provides multi-policy-aware exact modeling
of set-associative cache misses of affine programs for single
thread execution on private (upto L2) caches, offering high
accuracy at the expense of increased compile-time.

In POLYUFC-CM, computation for compulsory misses is
identical with [8]; for capacity/conflict misses, each cache set
is evaluated independently, assuming fully-associative behavior
within each set. This simplification enhances PolyUFC-CM’s
scalability by removing redundant reuse polytopes before
symbolic counting of convex sets. On the other hand, using a
modeling like [8]—that relies on k-fold set-difference opera-
tions—for high-associative shared-caches like LLC can trigger
a combinatorial explosion in the number of pieces, and leads
to quantifier eliminations. POLYUFC offers expressiveness
comparable to the affine dialect with quasi-linear expressions,
supporting input IR representation with constant-size tiling,
parametric tiling restricted to hyper-rectangular regions with
constant lower bounds, and non-parametric loop skewing.

Recent techniques [38, 85, 76] for estimating cache behavior
of affine programs primarily target fully-associative caches, but
their approximations may misestimate miss rates on practical
set-associative caches (e.g., 16- or 20-way LLCS), affecting
program characterization and EDP analysis.

Though POLYUFC can be improved in precision and
scalability, it can be seen as a post-scheduling polyhedral
compiler flow, that can be integrated with other established
polyhedral compilers [80, 99, 95, 6] in a complementary
manner.

Energy-Efficient Compilation has progressed from early
static DVFS methods [103, 102] to hybrid static+dynamic
and hardware-aware strategies [7], incorporating OI analysis,
profiling, and software-controlled DVFS. Some methods are:
race-to-sleep paradigm [104], decoupled access-execute [48,
51, 93], along with combining compiler-runtime [94, 66], and
ML for power cap prediction [42], and coordinated core/uncore
frequency scaling [89], fine-grained autotuning [86], and kernel-
level optimization for heterogeneous systems [29].

Linux OS-based core scaling governors [28] (such as
ondemand and powersave) incur high control-loop latency.
On the other hand, compiler-based approaches, such as [7, 48],
or POLYUFC provide fine-grained phase-aware guidance
within/across loop-nest boundaries, thereby reducing control-
loop latency by orders of magnitude.

Roofline-Aware Characterization POLYUFC uses a Per-
formance+Power characterization18 (using POLYUFC-CM, a
multi-level cache model to estimate Qci , 1 ≤ i ≤ N , QDRAM ,
and OI with Eqns. 4, 9) and a rooflines-based parametric math-
ematical model (Sec. V) to estimate average/peak performance
and power. In comparison, [7] proposes program classification
using profiling and an approximate static model PolyFeat [80]
for OI calculation of affine programs.

Compiler-Driven Core/Uncore Scaling and Capping
POLYUFC applies uncore capping that operates on-top-of

18The characterization provided by POLYUFC is more than classification;
it gives the performance+power gaps to hardware peaks, as well as amount of
reuse (distance to Bt

DRAM) in FpB at LLC that the program achieves.

core scaling supported by the Hardware P-State [21, 56], and
uncore scaling of UFS [57] driver. Core scaling is orthogonal
for the goals of POLYUFC; it is left for the default HWP to
manage core-frequency. Capping necessitates knowledge of
multi-domain (core/uncore) rooflines, both performance and
power, that existing core scaling techniques [7, 48] lack.

Intra/Inter Loop-Nest Control POLYUFC performs inter
loop-nest uncore capping as proposed in Sec. VI, aligning with
the stable OI typically seen in single-phase ML loop-nests
(e.g., matmul, matvec, ReLU). Although finer-grain control
is possible in POLYUFC, empirical results on modern CPUs
(like RPL) show loop-level capping is effective because of
its low latency. In contrast, [7] proposes intra-loop-nest core
scaling by modeling frequency variations within the loops.

We are not aware of any prior compiler-driven frequency
capping approaches. It is possible to use techniques like DVFS
for core [103, 48, 7, 87], and DUFS for uncore [37, 18, 34, 4]
alongside POLYUFC to optimize for energy and performance.

Rooflines for Compiler Optimizations Elango et al. [27]
used rooflines to theoretical define the OI upper-bound for
a given program. Our goal is to estimate OI and statically
characterize programs according to their boundedness.

IX. CONCLUSION

In this work, we introduced POLYUFC, the first com-
pilation flow for uncore frequency capping in MLIR. By
combining statically computed Operational Intensity with
performance and power roofline analyses, POLYUFC uses
characterization of programs to make frequency capping
decisions. Experimental results on important affine programs—
from NLP/Vision domains and POLYBENCH—to demonstrate
that our approach effectively balances performance and energy
consumption, and achieves improvements in EDP of up to
42% on CB and upto 54% on BB programs. POLYUFC
framework enables further research in compiler-driven power
optimizations across dialects, as demonstrated with ML-
POLYUFC, and can be extended to new architectures and
multiple optimization goals. Additional details are available at
https://compilers.cse.iith.ac.in/projects/polyufc.

ACKNOWLEDGEMENTS

We are grateful to Govindarajan Ramaswamy, S. Venkata-
Keerthy, and Siddharth Jain for their valuable feedback and
discussions on the submitted version of this paper. We thank
Albert Cohen and Dibyendu Das for providing feedback on
early versions of the work. We acknowledge Charukesh V,
Siddhartha Neyagapula, Ananya Varshney, Rajiv Shailesh
Chitale, and Shrikar Anand Dongre for their contributions
at various stages of this work. We are also grateful to the
anonymous reviewers for their insightful and detailed comments
that substantially improved the paper.

This work is supported by the Prime Minister’s Research
Fellowship (PMRF) programme, Government of India, with
additional funding from faculty grants provided by AMD, and
Qualcomm.

573

https://compilers.cse.iith.ac.in/projects/polyufc

REFERENCES
[1] A. Abel and J. Reineke, “nanobench: A low-overhead tool for running

microbenchmarks on x86 systems,” in 2020 IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS).
IEEE, 2020, pp. 34–46.

[2] M. A. Abella-González, P. Carollo-Fernández, L.-N. Pouchet,
F. Rastello, and G. Rodrı́guez, “Polybench/python: benchmarking
python environments with polyhedral optimizations,” in Proceedings
of the 30th ACM SIGPLAN International Conference on Compiler
Construction, ser. CC 2021. New York, NY, USA: Association
for Computing Machinery, 2021, p. 59–70. [Online]. Available:
https://doi.org/10.1145/3446804.3446842

[3] A. Acharya, U. Bondhugula, and A. Cohen, “Polyhedral auto-
transformation with no integer linear programming,” in Proceedings
of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI 2018. New York, NY, USA:
ACM, 2018, pp. 529–542. [Online]. Available: http://doi.acm.org/10.
1145/3192366.3192401

[4] E. André, R. Dulong, A. Guermouche, and F. Trahay, “duf: Dynamic
uncore frequency scaling to reduce power consumption,” Concurrency
and Computation: Practice and Experience, vol. 34, no. 3, p. e6580,
2022. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.
1002/cpe.6580

[5] J. Ansel et al., “Pytorch 2: Faster machine learning through dynamic
python bytecode transformation and graph compilation,” in Proceedings
of the 29th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 2,
ser. ASPLOS ’24. Association for Computing Machinery, 2024, p.
929–947. [Online]. Available: https://doi.org/10.1145/3620665.3640366

[6] R. Baghdadi, J. Ray, M. B. Romdhane, E. Del Sozzo, A. Akkas,
Y. Zhang, P. Suriana, S. Kamil, and S. Amarasinghe, “Tiramisu:
a polyhedral compiler for expressing fast and portable code,” in
Proceedings of the 2019 IEEE/ACM International Symposium on Code
Generation and Optimization, ser. CGO 2019. IEEE Press, 2019.

[7] W. Bao, C. Hong, S. Chunduri, S. Krishnamoorthy, L.-N. Pouchet,
F. Rastello, and P. Sadayappan, “Static and dynamic frequency scaling
on multicore cpus,” ACM Trans. Archit. Code Optim., vol. 13, no. 4,
dec 2016. [Online]. Available: https://doi.org/10.1145/3011017

[8] W. Bao, S. Krishnamoorthy, L.-N. Pouchet, and P. Sadayappan,
“Analytical modeling of cache behavior for affine programs,” Proc.
ACM Program. Lang., vol. 2, no. POPL, Dec. 2017. [Online]. Available:
https://doi.org/10.1145/3158120

[9] C. Bastoul, “Openscop: A specification and a library for data exchange
in polyhedral compilation tools,” Paris-Sud University, France, Tech.
Rep., September 2011.

[10] D. P. Bertsekas, “Nonlinear programming,” Journal of the Operational
Research Society, vol. 48, no. 3, pp. 334–334, 1997.

[11] K. Beyls and E. D’Hollander, “Reuse distance as a metric for cache
behavior.” in Proceedings of the IASTED International Conference on
Parallel and Distributed Computing and Systems, IASTED, 2001.

[12] K. Beyls and E. H. D’Hollander, “Generating cache hints for improved
program efficiency,” Journal of Systems Architecture, vol. 51, no. 4, pp.
223–250, 2005.

[13] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A
practical automatic polyhedral parallelizer and locality optimizer,” in
Proceedings of the 29th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’08. New York,
NY, USA: Association for Computing Machinery, 2008, p. 101–113.
[Online]. Available: https://doi.org/10.1145/1375581.1375595

[14] U. Bondhugula, A. Acharya, and A. Cohen, “The pluto+ algorithm: A
practical approach for parallelization and locality optimization of affine
loop nests,” ACM Trans. Program. Lang. Syst., vol. 38, no. 3, Apr.
2016. [Online]. Available: https://doi.org/10.1145/2896389

[15] U. Bondhugula et al., “Pluto compiler, version
0.11.4,” https://github.com/bondhugula/pluto/commit/
8e24aaddf4d2acde638335afe1215b22aa559adb, 2023.

[16] J. A. Butts and G. S. Sohi, “A static power model for architects,” in
Proceedings of the 33rd Annual ACM/IEEE International Symposium
on Microarchitecture, ser. MICRO 33. New York, NY, USA:
Association for Computing Machinery, 2000, p. 191–201. [Online].
Available: https://doi.org/10.1145/360128.360148

[17] S. Chatterjee, E. Parker, P. J. Hanlon, and A. R. Lebeck, “Exact analysis
of the cache behavior of nested loops,” ACM SIGPLAN Notices, vol. 36,
no. 5, pp. 286–297, 2001.

[18] H.-Y. Cheng, J. Zhan, J. Zhao, Y. Xie, J. Sampson, and M. J. Irwin,
“Core vs. uncore: The heart of darkness,” in Proceedings of the 52nd
Annual Design Automation Conference, 2015, pp. 1–6.

[19] J. W. Choi, “A roofline model of energy ubenchmarks,” https://github.
com/jeewhanchoi/a-roofline-model-of-energy-ubenchmarks, 2020.

[20] J. W. Choi, D. Bedard, R. Fowler, and R. Vuduc, “A roofline model of
energy,” in 2013 IEEE 27th International Symposium on Parallel and
Distributed Processing, 2013, pp. 661–672.

[21] I. Corporation, “Enhanced power management for low-latency
workloads,” Intel Corporation, Tech. Rep., 2021, [Online]. [Online].
Available: https://builders.intel.com/docs/networkbuilders/power-
management-enhanced-power-management-for-low-latency-
workloads-technology-guide-1617438252.pdf

[22] L. Dagum and R. Menon, “Openmp: an industry standard api for shared-
memory programming,” IEEE computational science and engineering,
vol. 5, no. 1, pp. 46–55, 1998.

[23] H. David et al., “Rapl: memory power estimation and capping,” in
Proceedings of the 16th ACM/IEEE International Symposium on Low
Power Electronics and Design, ser. ISLPED ’10. New York, NY, USA:
Association for Computing Machinery, 2010, p. 189–194. [Online].
Available: https://doi.org/10.1145/1840845.1840883

[24] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” CoRR,
2018. [Online]. Available: http://arxiv.org/abs/1810.04805

[25] Edler, Jan, “Dinero IV trace-driven uniprocessor cache simulator,” 1994,
http://pages.cs.wisc.edu/∼markhill/DineroIV/.

[26] V. Elango, F. Rastello, L.-N. Pouchet, J. Ramanujam, and P. Sadayappan,
“On characterizing the data movement complexity of computational dags
for parallel execution,” in Proceedings of the 26th ACM Symposium on
Parallelism in Algorithms and Architectures, ser. SPAA ’14. New
York, NY, USA: Association for Computing Machinery, 2014, p.
296–306. [Online]. Available: https://doi.org/10.1145/2612669.2612694

[27] V. Elango, N. Sedaghati, F. Rastello, L.-N. Pouchet, J. Ramanujam,
R. Teodorescu, and P. Sadayappan, “On using the roofline model
with lower bounds on data movement,” ACM Trans. Archit.
Code Optim., vol. 11, no. 4, Jan. 2015. [Online]. Available:
https://doi.org/10.1145/2693656

[28] Elsevier, ““advanced configuration and power interface”,” ScienceDirect
Topics, 2025, accessed: 2025, https://www.sciencedirect.com/topics/
computer-science/advanced-configuration-and-power-interface.

[29] K. Fan, M. D’Antonio, L. Carpentieri, B. Cosenza, F. Ficarelli, and
D. Cesarini, “Synergy: Fine-grained energy-efficient heterogeneous
computing for scalable energy saving,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’23. ACM, 2023. [Online]. Available:
https://doi.org/10.1145/3581784.3607055

[30] P. Feautrier, “Some efficient solutions to the affine scheduling
problem: I. one-dimensional time,” Int. J. Parallel Program.,
vol. 21, no. 5, p. 313–348, Oct. 1992. [Online]. Available:
https://doi.org/10.1007/BF01407835

[31] ——, “Some efficient solutions to the affine scheduling problem. part ii.
multidimensional time,” International journal of parallel programming,
vol. 21, pp. 389–420, 1992.

[32] M. J. Fischer and M. O. Rabin, “Super-exponential complexity of
presburger arithmetic,” in Quantifier Elimination and Cylindrical
Algebraic Decomposition. Springer, 1998, pp. 122–135.

[33] X. Fu, X. Wang, and C. Lefurgy, “How much power oversubscription
is safe and allowed in data centers,” in Proceedings of the 8th ACM
International Conference on Autonomic Computing, ser. ICAC ’11.
New York, NY, USA: Association for Computing Machinery, 2011, p.
21–30. [Online]. Available: https://doi.org/10.1145/1998582.1998589

[34] N. Gholkar, F. Mueller, and B. Rountree, “Uncore power scavenger: a
runtime for uncore power conservation on hpc systems,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’19. New York, NY,
USA: Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3295500.3356150

[35] S. Ghosh, M. Martonosi, and S. Malik, “Cache miss equations: a
compiler framework for analyzing and tuning memory behavior,” ACM
Trans. Program. Lang. Syst., vol. 21, no. 4, p. 703–746, Jul. 1999.
[Online]. Available: https://doi.org/10.1145/325478.325479

[36] A. Guermouche, “Combining uncore frequency and dynamic power
capping to improve power savings,” in 2022 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), 2022.

574

https://doi.org/10.1145/3446804.3446842
http://doi.acm.org/10.1145/3192366.3192401
http://doi.acm.org/10.1145/3192366.3192401
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6580
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6580
https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1145/3011017
https://doi.org/10.1145/3158120
https://doi.org/10.1145/1375581.1375595
https://doi.org/10.1145/2896389
https://github.com/bondhugula/pluto/commit/8e24aaddf4d2acde638335afe1215b22aa559adb
https://github.com/bondhugula/pluto/commit/8e24aaddf4d2acde638335afe1215b22aa559adb
https://doi.org/10.1145/360128.360148
https://github.com/jeewhanchoi/a-roofline-model-of-energy-ubenchmarks
https://github.com/jeewhanchoi/a-roofline-model-of-energy-ubenchmarks
https://builders.intel.com/docs/networkbuilders/power-management-enhanced-power-management-for-low-latency-workloads-technology-guide-1617438252.pdf
https://builders.intel.com/docs/networkbuilders/power-management-enhanced-power-management-for-low-latency-workloads-technology-guide-1617438252.pdf
https://builders.intel.com/docs/networkbuilders/power-management-enhanced-power-management-for-low-latency-workloads-technology-guide-1617438252.pdf
https://doi.org/10.1145/1840845.1840883
http://arxiv.org/abs/1810.04805
http://pages.cs.wisc.edu/~markhill/DineroIV/
https://doi.org/10.1145/2612669.2612694
https://doi.org/10.1145/2693656
https://www.sciencedirect.com/topics/computer-science/advanced-configuration-and-power-interface
https://www.sciencedirect.com/topics/computer-science/advanced-configuration-and-power-interface
https://doi.org/10.1145/3581784.3607055
https://doi.org/10.1007/BF01407835
https://doi.org/10.1145/1998582.1998589
https://doi.org/10.1145/3295500.3356150
https://doi.org/10.1145/325478.325479

[37] V. Gupta, P. Brett, D. Koufaty, D. Reddy, S. Hahn, K. Schwan, and
G. Srinivasa, “The forgotten ’uncore’: on the energy-efficiency of
heterogeneous cores,” in Proceedings of the 2012 USENIX Conference
on Annual Technical Conference, ser. USENIX ATC’12. USA: USENIX
Association, 2012, p. 34.

[38] T. Gysi, T. Grosser, L. Brandner, and T. Hoefler, “A fast analytical
model of fully associative caches,” in Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI 2019. New York, NY, USA: Association
for Computing Machinery, 2019, p. 816–829. [Online]. Available:
https://doi.org/10.1145/3314221.3314606

[39] C. Haase, “A survival guide to presburger arithmetic,” ACM SIGLOG
News, vol. 5, no. 3, p. 67–82, Jul. 2018. [Online]. Available:
https://doi.org/10.1145/3242953.3242964

[40] D. Hackenberg, R. Schöne, T. Ilsche, D. Molka, J. Schuchart, and
R. Geyer, “An energy efficiency feature survey of the intel haswell
processor,” in 2015 IEEE International Parallel and Distributed
Processing Symposium Workshop, 2015, pp. 896–904.

[41] J. Haj-Yahya, M. Alser, J. Kim, A. G. Yağlıkçı, N. Vijaykumar,
E. Rotem, and O. Mutlu, “Sysscale: exploiting multi-domain dynamic
voltage and frequency scaling for energy efficient mobile processors,” in
Proceedings of the ACM/IEEE 47th Annual International Symposium on
Computer Architecture, ser. ISCA ’20. IEEE Press, 2020, p. 227–240.
[Online]. Available: https://doi.org/10.1109/ISCA45697.2020.00029

[42] M. Hao, W. Zhang, Y. Wang, G. Lu, F. Wang, and A. V. Vasilakos,
“Fine-grained powercap allocation for power-constrained systems based
on multi-objective machine learning,” IEEE Transactions on Parallel
and Distributed Systems, vol. 32, no. 7, 2021.

[43] W. Heirman et al., “Sniper: Scalable and accurate parallel multi-
core simulation,” in 8th International Summer School on Advanced
Computer Architecture and Compilation for High-Performance and
Embedded Systems (ACACES-2012). High-Performance and Embedded
Architecture and Compilation Network, 2012.

[44] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantita-
tive approach. Elsevier, 2011.

[45] D. L. Hill, D. Bachand, S. Bilgin, R. Greiner, P. Hammarlund, T. Huff,
S. Kulick, and R. Safranek, “The uncore: A modular approach to feeding
the high-performance cores.” Intel Technology Journal, vol. 14, no. 3,
2010.

[46] Intel Corporation, “Intel power management technology overview,” Intel
Corporation, Tech. Rep. 637748-v2, Feb. 2022, [Online]. [Online]. Avail-
able: https://cdrdv2-public.intel.com/637748/Power%20Management%
20-%20Technology%20Overview%20TechGuide 637748v2.pdf

[47] H. Jagode, A. Danalis, G. Congiu, D. Barry, A. Castaldo,
and J. Dongarra, “Advancements of papi for the exascale
generation,” The International Journal of High Performance Computing
Applications, vol. 39, no. 2, pp. 251–268, 2024. [Online]. Available:
https://doi.org/10.1177/10943420241303884

[48] A. Jimborean, K. Koukos, V. Spiliopoulos, D. Black-Schaffer, and
S. Kaxiras, “Fix the code. don’t tweak the hardware: A new
compiler approach to voltage-frequency scaling,” in Proceedings of
Annual IEEE/ACM International Symposium on Code Generation
and Optimization, ser. CGO ’14. New York, NY, USA: Association
for Computing Machinery, 2014, p. 262–272. [Online]. Available:
https://doi.org/10.1145/2581122.2544161

[49] K. N. Khan, M. Hirki, T. Niemi, J. K. Nurminen, and Z. Ou, “Rapl
in action: Experiences in using rapl for power measurements,” ACM
Trans. Model. Perform. Eval. Comput. Syst., vol. 3, no. 2, mar 2018.
[Online]. Available: https://doi.org/10.1145/3177754

[50] S. C. Kleene, “Representation of events in nerve nets and finite automata,”
Automata Studies, p. 3–42, 1956.

[51] K. Koukos, P. Ekemark, G. Zacharopoulos, V. Spiliopoulos, S. Kaxiras,
and A. Jimborean, “Multiversioned decoupled access-execute: the
key to energy-efficient compilation of general-purpose programs,”
in Proceedings of the 25th International Conference on Compiler
Construction, ser. CC 2016. New York, NY, USA: Association
for Computing Machinery, 2016, p. 121–131. [Online]. Available:
https://doi.org/10.1145/2892208.2892209

[52] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems, vol. 25. Curran Associates, Inc.,
2012. [Online]. Available: https://proceedings.neurips.cc/paper files/
paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[53] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar,

R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko, “Mlir:
Scaling compiler infrastructure for domain specific computation,” in
2021 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). IEEE, 2021, pp. 2–14.

[54] X. Li, G. Yan, Y. Han, and X. Li, “Smartcap: User experience-oriented
power adaptation for smartphone’s application processor,” in 2013
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2013, pp. 57–60.

[55] Linux Kernel development community, “amd pstate cpu performance
scaling driver,” https://www.kernel.org/doc/html/v6.8/admin-guide/pm/
amd-pstate.html, 2021, [Online].

[56] ——, “intel pstate cpu performance scaling driver,” https://www.kernel.
org/doc/html/v6.8/admin-guide/pm/intel pstate.html [Online], 2017.

[57] ——, “Intel uncore frequency cpu uncore frequency scaling driver,”
https://www.kernel.org/doc/html/v6.8/admin-guide/pm/intel uncore
frequency scaling.html [Online], 2023.

[58] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A
convnet for the 2020s,” in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 2022, pp. 11 976–11 986.

[59] LLVM, “MLIR Affine Dialect Documentation,” https://mlir.llvm.org/
docs/Dialects/Affine/, LLVM, 2025, [Online].

[60] ——, “MLIR Linalg Dialect Documentation,” https://mlir.llvm.org/docs/
Dialects/Linalg/, LLVM, 2025, [Online].

[61] LLVM, “torch-mlir: Pytorch ecosystem compiler support in mlir,” https:
//github.com/llvm/torch-mlir, 2025.

[62] S. Malla et al., “Coordinated priority-aware charging of distributed
batteries in oversubscribed data centers,” in 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2020.

[63] W. S. Moses et al., “Polygeist compiler,” 2025, accessed: Sept
2025. [Online]. Available: https://github.com/llvm/Polygeist/commit/
77c04bb2a7a2406ca9480bcc9e729b07d2c8d077

[64] W. S. Moses, L. Chelini, R. Zhao, and O. Zinenko, “Polygeist:
Raising c to polyhedral mlir,” in Proceedings of the 30th International
Conference on Parallel Architectures and Compilation Techniques,
ser. PACT ’21. IEEE Press, 2021, p. 45–59. [Online]. Available:
https://doi.org/10.1109/PACT52795.2021.00011

[65] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “Papi: A portable interface
to hardware performance counters,” in Proceedings of the department
of defense HPCMP users group conference, vol. 710. University of
Tennessee, 1999.

[66] L. Narmour, T. Yuki, and S. Rajopadhye, “(when) do multiple passes
save energy?” in Embedded Computer Systems: Architectures, Modeling,
and Simulation, A. Orailoglu, M. Jung, and M. Reichenbach, Eds.
Cham: Springer International Publishing, 2022, pp. 451–466.

[67] D. Nguyen Luu, “The computational complexity
of presburger arithmetic,” Ph.D. dissertation, University
of California, Los Angeles, 2018. [Online]. Avail-
able: https://www.proquest.com/dissertations-theses/computational-
complexity-presburger-arithmetic/docview/2061552413/se-2

[68] NVIDIA, “nvml,” https://developer.nvidia.com/management-library-
nvml, 2025, [Online].

[69] A. Olivry, J. Langou, L.-N. Pouchet, P. Sadayappan, and F. Rastello,
“Automated derivation of parametric data movement lower bounds for
affine programs,” in Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI 2020.
New York, NY, USA: ACM, 2020, p. 808–822.

[70] A. Olivry, G. Iooss, N. Tollenaere, A. Rountev, P. Sadayappan, and
F. Rastello, “Ioopt: automatic derivation of i/o complexity bounds
for affine programs,” in Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language Design and
Implementation, ser. PLDI 2021. USA: ACM, 2021, p. 1187–1202.
[Online]. Available: https://doi.org/10.1145/3453483.3454103

[71] OpenMP, “Openmp api specification 6.0,” https://www.openmp.org,
2025, accessed: 2025-09-11.

[72] K. O’Leary, I. Gazizov, A. Shinsel, R. Belenov, Z. Matveev, and
D. Petunin, “Intel advisor roofline analysis,” THE CHANGING HPC
LANDSCAPE STILL LOOKS THE SAME, p. 56, 2017.

[73] J.-G. Park, C.-Y. Hsieh, N. Dutt, and S.-S. Lim, “Synergistic cpu-gpu
frequency capping for energy-efficient mobile games,” ACM Trans.
Embed. Comput. Syst., vol. 17, no. 2, Dec. 2017. [Online]. Available:
https://doi.org/10.1145/3145337

[74] P. Patel, E. Choukse et al., “Characterizing power management
opportunities for llms in the cloud,” in Proceedings of the 29th ACM
International Conference on Architectural Support for Programming

575

https://doi.org/10.1145/3314221.3314606
https://doi.org/10.1145/3242953.3242964
https://doi.org/10.1109/ISCA45697.2020.00029
https://cdrdv2-public.intel.com/637748/Power%20Management%20-%20Technology%20Overview%20TechGuide_637748v2.pdf
https://cdrdv2-public.intel.com/637748/Power%20Management%20-%20Technology%20Overview%20TechGuide_637748v2.pdf
https://doi.org/10.1177/10943420241303884
https://doi.org/10.1145/2581122.2544161
https://doi.org/10.1145/3177754
https://doi.org/10.1145/2892208.2892209
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://www.kernel.org/doc/html/v6.8/admin-guide/pm/amd-pstate.html
https://www.kernel.org/doc/html/v6.8/admin-guide/pm/amd-pstate.html
https://www.kernel.org/doc/html/v6.8/admin-guide/pm/intel_pstate.html
https://www.kernel.org/doc/html/v6.8/admin-guide/pm/intel_pstate.html
https://www.kernel.org/doc/html/v6.8/admin-guide/pm/intel_uncore_frequency_scaling.html
https://www.kernel.org/doc/html/v6.8/admin-guide/pm/intel_uncore_frequency_scaling.html
https://mlir.llvm.org/docs/Dialects/Affine/
https://mlir.llvm.org/docs/Dialects/Affine/
https://mlir.llvm.org/docs/Dialects/Linalg/
https://mlir.llvm.org/docs/Dialects/Linalg/
https://github.com/llvm/torch-mlir
https://github.com/llvm/torch-mlir
https://github.com/llvm/Polygeist/commit/77c04bb2a7a2406ca9480bcc9e729b07d2c8d077
https://github.com/llvm/Polygeist/commit/77c04bb2a7a2406ca9480bcc9e729b07d2c8d077
https://doi.org/10.1109/PACT52795.2021.00011
https://www.proquest.com/dissertations-theses/computational-complexity-presburger-arithmetic/docview/2061552413/se-2
https://www.proquest.com/dissertations-theses/computational-complexity-presburger-arithmetic/docview/2061552413/se-2
https://developer.nvidia.com/management-library-nvml
https://developer.nvidia.com/management-library-nvml
https://doi.org/10.1145/3453483.3454103
https://www.openmp.org
https://doi.org/10.1145/3145337

Languages and Operating Systems, Volume 3, ser. ASPLOS ’24. New
York, NY, USA: Association for Computing Machinery, 2024, p.
207–222. [Online]. Available: https://doi.org/10.1145/3620666.3651329

[75] L. Piga, I. Narayanan, A. Sundarrajan et al., “Expanding datacenter
capacity with dvfs boosting: A safe and scalable deployment
experience,” in Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 1, ser. ASPLOS ’24. New York, NY, USA:
Association for Computing Machinery, 2024, p. 150–165. [Online].
Available: https://doi.org/10.1145/3617232.3624853

[76] A. Pitchanathan, K. Grover, and T. Grosser, “Falcon: A scalable
analytical cache model,” Proc. ACM Program. Lang., vol. 8, no. PLDI,
Jun. 2024. [Online]. Available: https://doi.org/10.1145/3656452

[77] L.-N. Pouchet, C. Bastoul, A. Cohen, and N. Vasilache, “Iterative
optimization in the polyhedral model: Part i, one-dimensional
time,” in Proceedings of the International Symposium on Code
Generation and Optimization, ser. CGO ’07. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 144–156. [Online]. Available:
https://doi.org/10.1109/CGO.2007.21

[78] L.-N. Pouchet, C. Bastoul, A. Cohen, and J. Cavazos, “Iterative
optimization in the polyhedral model: Part II, multidimensional time,”
SIGPLAN Not., vol. 43, no. 6, pp. 90–100, Jun. 2008. [Online].
Available: http://doi.acm.org/10.1145/1379022.1375594

[79] L.-N. Pouchet et al., “Polybench benchmarks,” http://sourceforge.net/
projects/polybench/, 2025.

[80] L.-N. Pouchet, “Pocc version 1.6.0-alpha,” http://pocc.sf.net, 2022,
accessed 27-Aug-2025.

[81] H. Qiu, L. Zhang, C. W. H. Franke, Z. T. Kalbarczyk, and R. K. Iyer,
“Parm: Adaptive resource allocation for datacenter power capping,” in
Machine Learning for Systems Workshop at the Annual Conference on
Neural Information Processing Systems (NeurIPS 2023), 2023.

[82] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al.,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[83] S. Ramesh, S. Perarnau, S. Bhalachandra, A. D. Malony, and P. Beckman,
“Understanding the impact of dynamic power capping on application
progress,” in 2019 IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS), 2019, pp. 793–804.

[84] V. Sakalkar, V. Kontorinis, D. Landhuis, S. Li et al., “Data center power
oversubscription with a medium voltage power plane and priority-aware
capping,” in Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 497–511. [Online]. Available:
https://doi.org/10.1145/3373376.3378533

[85] N. R. Shah, A. Misra, A. Miné, R. Venkat, and R. Upadrasta,
“Bullseye: Scalable and accurate approximation framework for cache
miss calculation,” ACM Trans. Archit. Code Optim., vol. 20, no. 1,
Nov. 2022. [Online]. Available: https://doi.org/10.1145/3558003

[86] M. Sourouri, E. B. Raknes, N. Reissmann, J. Langguth, D. Hackenberg,
R. Schöne, and P. G. Kjeldsberg, “Towards fine-grained dynamic
tuning of hpc applications on modern multi-core architectures,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’17. ACM,
2017. [Online]. Available: https://doi.org/10.1145/3126908.3126945

[87] V. Spiliopoulos, S. Kaxiras, and G. Keramidas, “Green governors: A
framework for continuously adaptive dvfs,” in 2011 International Green
Computing Conference and Workshops, 2011, pp. 1–8.

[88] B. Subramaniam and W.-c. Feng, “Towards energy-proportional
computing for enterprise-class server workloads,” in Proceedings of the
4th ACM/SPEC International Conference on Performance Engineering,
ser. ICPE ’13. Association for Computing Machinery, 2013, p. 15–26.
[Online]. Available: https://doi.org/10.1145/2479871.2479878

[89] V. Sundriyal, M. Sosonkina, B. Westheimer, and M. Gordon, “Core
and uncore joint frequency scaling strategy,” Journal of Computer and
Communications, vol. 06, pp. 184–201, 01 2018.

[90] G. Team et al., “Gemma 2: Improving open language models at a
practical size,” arXiv preprint arXiv:2408.00118, 2024.

[91] D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting perfor-
mance data with papi-c,” in Tools for High Performance Computing
2009. Springer, 2010, pp. 157–173.

[92] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “Llama 2: Open
foundation and fine-tuned chat models,” arXiv:2307.09288, 2023.

[93] K.-A. Tran, T. E. Carlson, K. Koukos, M. Själander, V. Spiliopoulos,
S. Kaxiras, and A. Jimborean, “Clairvoyance: look-ahead compile-time
scheduling,” in Proceedings of the 2017 International Symposium on
Code Generation and Optimization, ser. CGO ’17. IEEE Press, 2017.

[94] K.-A. Tran, A. Jimborean, T. E. Carlson, K. Koukos, M. Själander, and
S. Kaxiras, “Swoop: software-hardware co-design for non-speculative,
execute-ahead, in-order cores,” in Proceedings of the 39th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI 2018. New York, NY, USA: Association
for Computing Machinery, 2018, p. 328–343. [Online]. Available:
https://doi.org/10.1145/3192366.3192393

[95] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. DeVito,
W. S. Moses, S. Verdoolaege, A. Adams, and A. Cohen, “Tensor
comprehensions: Framework-agnostic high-performance machine
learning abstractions,” 2018. [Online]. Available: https://arxiv.org/abs/
1802.04730

[96] S. Verdoolaege, “Isl: An integer set library for the polyhedral
model,” in Proceedings of the Third International Congress
Conference on Mathematical Software, ser. ICMS’10. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 299–302. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1888390.1888455

[97] S. Verdoolaege and T. Grosser, “Polyhedral extraction tool,” in Sec-
ond International Workshop on Polyhedral Compilation Techniques
(IMPACT’12), Paris, France, vol. 141, 2012.

[98] S. Verdoolaege, R. Seghir, K. Beyls, V. Loechner, and M. Bruynooghe,
“Counting integer points in parametric polytopes using barvinok’s
rational functions,” Algorithmica, vol. 48, no. 1, pp. 37–66, Mar. 2007.
[Online]. Available: http://dx.doi.org/10.1007/s00453-006-1231-0

[99] S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gómez,
C. Tenllado, and F. Catthoor, “Polyhedral parallel code generation for
cuda,” ACM Trans. Archit. Code Optim., vol. 9, no. 4, Jan. 2013.
[Online]. Available: https://doi.org/10.1145/2400682.2400713

[100] Z. Wang, Y. Zhang, F. Wei, B. Wang, Y. Liu, Z. Hu, J. Zhang,
X. Xu, J. He, X. Wang, W. Dou, G. Chen, and C. Tian,
“Using analytical performance/power model and fine-grained dvfs
to enhance ai accelerator energy efficiency,” in Proceedings of the
30th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 1, ser.
ASPLOS ’25. ACM, 2025, p. 1118–1132. [Online]. Available:
https://doi.org/10.1145/3669940.3707231

[101] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful
visual performance model for multicore architectures,” Commun.
ACM, vol. 52, no. 4, p. 65–76, apr 2009. [Online]. Available:
https://doi.org/10.1145/1498765.1498785

[102] Q. Wu, V. Reddi, Y. Wu, J. Lee, D. Connors, D. Brooks, M. Martonosi,
and D. Clark, “A dynamic compilation framework for controlling
microprocessor energy and performance,” in 38th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO’05), 2005.

[103] F. Xie, M. Martonosi, and S. Malik, “Compile-time dynamic
voltage scaling settings: opportunities and limits,” SIGPLAN
Not., vol. 38, no. 5, p. 49–62, may 2003. [Online]. Available:
https://doi.org/10.1145/780822.781138

[104] T. Yuki and S. Rajopadhye, “Folklore confirmed: Compiling for speed
= compiling for energy,” in Languages and Compilers for Parallel
Computing, C. Cas, caval and P. Montesinos, Eds. Cham: Springer
International Publishing, 2014, pp. 169–184.

[105] S. Zagoruyko and N. Komodakis, “Wide residual networks,” CoRR,
vol. abs/1605.07146, 2016. [Online]. Available: http://arxiv.org/abs/
1605.07146

[106] C. Zhang et al., “Flex: high-availability datacenters with zero reserved
power,” in Proceedings of the 48th Annual International Symposium on
Computer Architecture, ser. ISCA ’21. IEEE Press, 2021, p. 319–332.
[Online]. Available: https://doi.org/10.1109/ISCA52012.2021.00033

[107] H. Zhang, A. Nukada, and Q. Liao, “Fcufs: Core-level frequency tuning
for energy optimization on intel processors,” in 2024 IEEE International
Conference on Cluster Computing (CLUSTER), 2024.

[108] H. Zhang and H. Hoffmann, “Maximizing performance under a power
cap: A comparison of hardware, software, and hybrid techniques,”
SIGPLAN Not., vol. 51, no. 4, p. 545–559, mar 2016. [Online].
Available: https://doi.org/10.1145/2954679.2872375

576

https://doi.org/10.1145/3620666.3651329
https://doi.org/10.1145/3617232.3624853
https://doi.org/10.1145/3656452
https://doi.org/10.1109/CGO.2007.21
http://doi.acm.org/10.1145/1379022.1375594
http://sourceforge.net/projects/polybench/
http://sourceforge.net/projects/polybench/
http://pocc.sf.net
https://doi.org/10.1145/3373376.3378533
https://doi.org/10.1145/3558003
https://doi.org/10.1145/3126908.3126945
https://doi.org/10.1145/2479871.2479878
https://doi.org/10.1145/3192366.3192393
https://arxiv.org/abs/1802.04730
https://arxiv.org/abs/1802.04730
http://dl.acm.org/citation.cfm?id=1888390.1888455
http://dx.doi.org/10.1007/s00453-006-1231-0
https://doi.org/10.1145/2400682.2400713
https://doi.org/10.1145/3669940.3707231
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/780822.781138
http://arxiv.org/abs/1605.07146
http://arxiv.org/abs/1605.07146
https://doi.org/10.1109/ISCA52012.2021.00033
https://doi.org/10.1145/2954679.2872375

	Introduction and Motivation
	Background
	Affine Programs
	Polyhedral Compilation
	Set-Associative Caches and Cache Misses
	Operational Intensity
	Roofline Models for Performance and Power
	Frequency Capping

	Overview of PolyUFC
	Characterization of Affine Programs
	An Approximate Set-Associative Cache Model
	Counting Cache Misses
	Calculating Operational Intensity (I)
	Kernel Characterization Using Rooflines

	Parametric Performance/Power Estimation
	Performance and Bandwidth
	Uncore Power and Energy

	ML-PolyUFC: Multi-Level Application of Uncore Frequency Caps
	A Study of Multi-Level Granularity: Across Inter/Intra Dialects
	Dialect-Aware Frequency Cap Strategies: for Analysis and Application
	Searching for Frequency Caps (PolyUFC-Search)

	Experimental Evaluation
	Implementation of PolyUFC
	Experimental Setup
	Evaluation Benchmarks and Justification
	Characterization of Programs Using Rooflines
	Time, Energy, and EDP Comparison
	Discussion

	Related Work
	Conclusion

