
ML-LLVM-Tools: Towards Seamless Integration of Machine
Learning in Compiler Optimizations

Siddharth Jain1, S. VenkataKeerthy1 , Umesh Kalvakuntla1,

Albert Cohen2, Ramakrishna Upadrasta1

IIT Hyderabad1, Google2

European LLVM Developers’ Meeting
10th May 2023

1

Overview

2

● ML in Compiler Optimizations
○ Scheme of ML in Compiler Optimizations
○ Proposed Infrastructure

● LLVM-gRPC: gRPC based framework to support Training
○ LLVM-gRPC Usage
○ Use Case: RL4ReAl, IR2Vec

● LLVM-InferenceEngine: ONNX based framework to support Inference
○ Proposed Inference Flow
○ LLVM-InferenceEngine Usage
○ Compile Time Comparison

● Related Works

● Summary

ML in Compiler Optimizations

3

● Impact of ML in hard, heuristic-based compiler optimizations

○ Success of ML in NLP, Image Processing, etc.

● Several ML based compiler optimizations exist
○ From late 90s to date

● ML based optimizations
○ Loop Vectorization, Loop Distribution, Function Inlining, Phase Ordering, Register Allocation, …

● ML in LLVM

○ Inlining decisions (From 11.x), Eviction in Register Allocation (From 14.x)

Scheme of ML in Compiler Optimizations

Compiler ML Models

Optimization Query

Model Output + Related Info

Input +
Related Info

Processing

Training /
Inference

Materialize
Predictions

Optimization Query

Model Output + Related Info

Opt 1

Opt n

4

Input
Program

Input
Program

Input
Program

Scheme of ML in Compiler Optimizations

Compiler ML Models

Optimization Query

Model Output

Processing

Training /
Inference

Materialize
Predictions

Optimization Query

Model Output

Opt 1

Opt n

5

Communication

Input
Program

Input
Program

Input
Program

Focusing on Communication …

Compiler ML Models

Processing

Training /
Inference

Materialize
PredictionsOpt 1

Opt n

6

Communication

● Highly Important

○ Scalability

○ Compile Time Issues

○ Memory Issues

○ …

● Determines the practicality

○ Deployment

○ Usability

○ …

Input
Program

Focusing on Communication …

Compiler ML Models

Processing

Training /
Inference

Materialize
PredictionsOpt 1

Opt n

7

Communication

● No single standard approach

○ Python wrappers

○ Compiler flags

○ …

● Model written with C++ APIs

○ Tight coupling of APIs

○ …

Current Approaches

Input
Program

Scalability

● Python/C++ wrappers

● 6x – 100x slowdown

Phase Ordering, Loop
Distribution, …

Integratability

Not all outputs can be
communicated via flags

Register Allocation,
Instruction Scheduling,

…

Programmability

Models written in C++ are
not ML developer friendly

RLLib, SciPy, …

Limitations of Current Approaches

Portability

Support for diverse ML
frameworks

TF, PyTorch, JAX, …

Need for scalable, versatile and common framework for

ML-based optimizations in LLVM

8

● ML model development in any

generic framework

● ML practitioners can develop

solutions in Python

LLVM-gRPC

gRPC based library

9

Proposed Infrastructure

Framework + Architecture independent Infrastructure in LLVM

Training Inference

● Within LLVM

● Trained models to be exported and

linked with LLVM toolchain

LLVM-InferenceEngine

ONNX based library

LLVM-gRPC
gRPC based framework to support Training

10

● Need for a seamless connection between LLVM and Python ML workloads
○ Interprocess communication

● gRPC: Modern open source high performance Remote Procedure Call

● LLVM-gRPC
○ Works as an LLVM library

○ Easy integration – As simple as implementing a few API calls

○ Support for any ML + RL workloads

● Use-case: RL4ReAl [CC’23]

LLVM-gRPC

11

S. VenkataKeerthy, Siddharth Jain, Anilava Kundu, Rohit Aggarwal, Albert Cohen, and Ramakrishna Upadrasta. RL4ReAl:
Reinforcement Learning for Register Allocation. CC 2023. https://compilers.cse.iith.ac.in/publications/rl4real/

https://compilers.cse.iith.ac.in/publications/rl4real/

12

LLVM-gRPC + Passes

syntax = "proto3";

package demopass;

// demo pass Service
service demoPass{
// RPC function to send and receive data
// between server and client
rpc getPassInfo(RequestData) returns (PassInfo) {}
}

message RequestData {
string functionName=1;
}

message PassInfo {
int32 numInstruction=1;
}

Example Proto File

demoPass: Defines the service (a C++ class)
which will be auto generated

getPassInfo: Defines the RPC function which
has to be overridden

Datafields that will be
auto generated using gRPC

Files generated on compiling proto file:
● demoPass.grpc.pb.cc
● demoPass.grpc.pb.h
● demoPass.pb.cc
● demoPass.pb.h
● demoPass_pb2_grpc.py
● demoPass_pb2.py

13

using demopass::RequestData;
using demopass::PassInfo;
using grpc::Status;
using grpc::ServerContext;
using demopass::demoPass;

struct Hello : public FunctionPass,demoPass::Service,gRPCUtil {

grpc::Status getPassInfo(grpc::ServerContext* context,
 const RequestData* request, PassInfo* response) override {
 // Pass logic to handle the request goes here
 ...
 return Status::OK;
}

bool runOnFunction(Function &F) override {
 ...
 RunService(this,"0.0.0.0:50051");
 ...
 if(exit_requested) { free(exit_requested);}
 return false;
}
}

LLVM-gRPC Usage: C++ Server

Types coming from
demoPass.grpc.pb.h

Inheriting classes

Implementation of gRPC
function

14

Blocking call to start the C++ server

Exiting blocking call

import grpc
import demoPass_pb2_grpc, demoPass_pb2

class demoPassClient(demoPass_pb2_grpc.demoPassServicer):

 def __init__(self):
 self.host='localhost'
 self.server_port=50051
 self.channel=grpc.insecure_channel(

'{}:{}'.format(self.host,self.server_port))
 self.stub= demoPass_pb2_grpc.demoPassStub(self.channel)

 def getRequest(self,requestData):
 request=demoPass_pb2.RequestData(requestData)
 return (self.stub.getPassInfo(request))

if __name__ == '__main__':
 client=demoPassClient()
 functionName=demoPass_pb2.functionName(self.current_fuction_name)
 instruction_count=client.getPassInfo(functionName)

LLVM-gRPC Usage: Python Client

15

Creating a channel and
stub from existing service

Call to gRPC function

Inheriting classes

Service class defined in demoPass_pb2_grpc.py

Use Case: RL4ReAl

RL4ReAl: Reinforcement Learning for Register Allocation

● RL based register allocator for LLVM compiler

● Models regalloc as graph coloring problem

● Based on MIR2Vec for Machine IR
○ An Extension of IR2Vec

● Uses LLVM-gRPC

16

S. VenkataKeerthy, Siddharth Jain, Anilava Kundu, Rohit Aggarwal, Albert Cohen, and Ramakrishna Upadrasta. RL4ReAl:
Reinforcement Learning for Register Allocation. CC 2023. https://compilers.cse.iith.ac.in/publications/rl4real/

https://compilers.cse.iith.ac.in/publications/rl4real/
https://dl.acm.org/doi/abs/10.1145/3578360.3580273

17

IR2Vec: LLVM IR Based Scalable Program Embeddings

Symbolic
Encodings

S. VenkataKeerthy, Rohit Aggarwal, Shalini Jain, Maunendra Sankar Desarkar, Ramakrishna Upadrasta, and Y. N. Srikant. IR2VEC: LLVM IR
Based Scalable Program Embeddings. ACM TACO. 2020. https://compilers.cse.iith.ac.in/projects/ir2vec/

https://compilers.cse.iith.ac.in/projects/ir2vec/

RL4ReAl: Reinforcement Learning for Register Allocation

Split Info

gRPC
Stub

gRPC
Stub

LLVM Environment RL Framework

Update

MLRegAlloc

18

gRPC

Ease of development

● Transparent to DL/RL
algorithms/policies

● Supports diverse ML/DL
frameworks

Ease of training

● Multiple GPUs distributed
training

● Parallel workers for sample
collection

Reusability of code

Write specifications once and use
in both Python and C++

Pros + Cons …

However, LLVM-gRPC is insufficient for inference -

○ Overhead on compile time
■ Interprocess communication

○ Not transparent to user (application developer)

19

LLVM-InferenceEngine
ONNX based framework to support Inference

20

LLVM-InferenceEngine

● Framework neutral, interoperable infrastructure for trained model integration

● ONNX: Open Neural Network Exchange
○ Linux Foundation Project (LF AI & Data)
○ Operates in most of the native languages
○ Supported by all major ML/DL frameworks

● Usecase study - RL4ReAl [CC’23], POSET-RL [ISPASS’22]

21

ONNX
ONNX. Open Neural Network Exchange. 2017, https://github.com/onnx/onnx

Shalini Jain, Yashas Andaluri, S. VenkataKeerthy and Ramakrishna Upadrasta. POSET-RL: Phase ordering for Optimizing
Size and Execution Time using Reinforcement Learning. ISPASS 2022. https://compilers.cse.iith.ac.in/projects/posetrl/

https://github.com/onnx/onnx
https://compilers.cse.iith.ac.in/projects/posetrl/

Model Integration

● Step 1: Exporting trained model from native to ONNX format

● Step 2: Importing model in compiler with ONNX (C++) runtime environment

22

Step 1 Step 2

Proposed Inference Flow

23

LLVM Tool
Chain

ONNX
Model

ONNX Runtime

ONNX Runtime

#include "environment.h"
#include "inference-engine.h"

struct Hello : public FunctionPass, Environment {

bool runOnFunction(Function &F) override {
 ...

 InferenceEngine* inference_driver =
new InferenceEngine(Environment* env);

 inference_driver->getPassInfo(PassData passData,
OptInfo &predictions);

 ...
}

LLVM-InferenceEngine Usage

24

Inheriting Environment class

InferenceEngine: Creates instance
of class InferenceEngine class

getPassInfo: Function to compute
predictions from model

Compile Time Comparison

25

POSET-RL: Phase ordering for Optimizing Size and Execution Time using Reinforcement Learning

RL4ReAl: Reinforcement Learning for Register Allocation

26

Advantages
Features/Advantages of LLVM-InferenceEngine

In-process communication
● No RPC calls, IO, etc.

Lesser compilation time overhead
● No communication overhead

Versatile + Common infrastructure
● Framework and model agnostic

Transparent to the user/programmer

● MLGO: A Machine Learning Framework for Compiler Optimization
○ Integrated with LLVM

○ Uses TensorFlow APIs and/or raw inter-process communication

○ We would like to explore different scenarios and use cases

■ RL Vs. ML, …; Single Vs. Multiple communication

● CompilerGym

○ Provides environments for training RL based compiler optimizations

Other Related Works

27

Mircea Trofin, et al. "MLGO: a machine learning guided compiler optimizations framework." arXiv preprint 2021.
https://arxiv.org/abs/2101.04808

Chris Cummins, et al. "CompilerGym: Robust, Performant Compiler Optimization Environments for AI Research." CGO
2022. https://github.com/facebookresearch/CompilerGym

https://arxiv.org/abs/2101.04808
https://github.com/facebookresearch/CompilerGym

● Scalable, Versatile and Common framework for ML-based optimizations in LLVM
○ Framework + Architecture independent Infrastructure

● Two components

○ Training - LLVM-gRPC

○ Inference - LLVM-InferenceEngine

● gRPC based training within Python in a framework independent manner

● In-memory ONNX based library for inference in a transparent manner

● Infrastructure is lightweight showing promising trends

● https://compilers.cse.iith.ac.in/publications/ml-llvm-tools

Summary

28

https://compilers.cse.iith.ac.in/publications/ml-llvm-tools

Thank you!
https://compilers.cse.iith.ac.in/publications/ml-llvm-tools

29

https://compilers.cse.iith.ac.in/publications/ml-llvm-tools

